Motivated by the Bekenstein–Hawkingformula and the area law behaviour of entanglement entropy, we propose that in any UV finite theory of quantum gravity with a smooth spacetime, the total entropy for a pure state in a co-dimension one spatial region, to leading order, is given by S = A 4 G N , where A is the area of the co-dimension two boundary. In the context of Dp brane holography we show that for some specially chosen regions bulk entanglement can be mapped to ‘target space’ entanglement in the boundary theory. Our conjecture then leads to a precise proposal for target space entanglement in the boundary theory at strong coupling and large N. In particular, it leads to the conclusion that the target space entanglement would scale like O(N 2) which is quite plausible in a system with O(N 2) degrees of freedom. Recent numerical advances in studying the D0 brane system hold out the hope that this proposal can be tested in a precise way in the future.
It has been suggested in arXiv:2004.00613 that in Dp-brane holography, entanglement in the target space of the D-brane Yang-Mills theory provides a precise notion of bulk entanglement in the gravity dual. We expand on this discussion by providing a gauge invariant characterization of operator sub-algebras corresponding to such entanglement. This is achieved by finding a projection operator which imposes a constraint characterizing the target space region of interest. By considering probe branes in the Coloumb branch we provide motivation for why the operator sub-algebras we consider are appropriate for describing a class of measurements carried out with low-energy probes in the corresponding bulk region of interest. We derive expressions for the corresponding Renyi entropies in terms of path integrals which can be directly used in numerical calculations.
In many quantum quench experiments involving cold atom systems the postquench phase can be described by a quantum field theory of free scalars or fermions, typically in a box or in an external potential. We will study mass quench of free scalars in arbitrary spatial dimensions d with particular emphasis on the rate of relaxation to equilibrium. Local correlators expectedly equilibrate to GGE; for quench to zero mass, interestingly the rate of approach to equilibrium is exponential or power law depending on whether d is odd or even respectively. For quench to non-zero mass, the correlators relax to equilibrium by a cosine-modulated power law, for all spatial dimensions d, even or odd. We briefly discuss generalization to O(N) models.
In many quantum quench experiments involving cold atom systems the post-quench system can be described by a quantum field theory of free scalars or fermions, typically in a box or in an external potential. We work with free scalars in arbitrary dimensions generalizing the techniques employed in our earlier work [1] in 1+1 dimensions. In this paper, we generalize to d spatial dimensions for arbitrary d.The system is considered in a box much larger than any other scale of interest. We start with the ground state, or a squeezed state, with a high mass and suddenly quench the system to zero mass ("critical quench"). We explicitly compute time-dependence of local correlators and show that at long times they are described by a generalized Gibbs ensemble (GGE), which, in special cases, reduce to a thermal (Gibbs) ensemble. The equilibration of local correlators can be regarded as 'subsystem thermalization' which we simply call 'thermalization' here (the notion of thermalization here also includes equlibration to GGE). The rate of approach to equilibrium is exponential or power law depending on whether d is odd or even respectively. As in 1+1 dimensions, details of the quench protocol affect the long time behaviour; this underlines the importance of irrelevant operators at IR in non-equilibrium situations. We also discuss quenches from a high mass to a lower non-zero mass, and find that in this case the approach to equilibrium is given by a power law in time, for all spatial dimensions d, even or odd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.