This study presents a new single-phase multilevel inverter topology along with whale optimisation algorithm-based switching technique. The proposed multilevel inverter requires a significantly reduced number of power semiconductor devices as compared with some of the prominent multilevel inverters. The proposed work is able to outperform the existing techniques involving popular optimisation techniques in terms of inverter performance, the rate of convergence and computational overhead. Detailed simulation analysis has been carried out for the proposed multilevel inverter on MATLAB/Simulink environment. An 11-level proposed inverter prototype has been developed and experimental results have been provided to verify the performance of the proposed multilevel inverter.
Summary
In this paper, a single‐switch hybrid high voltage gain boost converter topology employing zero‐voltage switching (ZVS) feature is proposed. The proposed converter can achieve high voltage gain with soft switching operation over a wide range of load. The topology is a combination of the Cockcroft‐Walton diode‐capacitor voltage multiplier and a conventional boost converter, which results in a hybrid DC‐DC converter. The diode‐capacitor ladder enables the converter to achieve high voltage gain without a transformer or coupled inductor. Because of its transformerless design, single switch with lower duty cycle requirement, and ZVS feature, the efficiency of the converter is improved significantly. Moreover, due to the input inductor, it is able to provide lower input current ripple and variable fractional voltage gain, which is a key requirement for maximum power point tracking (MPPT) in photovoltaic application. A 480‐W hardware prototype with 48‐V input voltage and 450‐V output voltage is developed, and experimental results are presented to validate the efficacy of the proposed converter. The total achievable efficiency is above 95.4%, in the full load range (80‐480 W).
Given the greater penetration of wind power, the impact of wind generators on grid electricity reliability imposes additional requirements. One of the most common technologies in wind power generating schemes is the permanent magnet synchronous generator (PMSG) converter. However, the controller calculation is difficult due to the nonlinear dynamical and time-varying characteristics of this type of conversion system. This study develops a unique intelligent controller approach based on the passivity notion that tracks velocity and maintains it functioning at the optimum torque. To address the robustness issues encountered by traditional generator-side converter (MSC) strategies such as proportional-integral (PI), this suggested scheme integrates a passivity-based procedure with a fuzzy logic control (FLC) methodology for a PMSG-based wind power converter. The suggested controller is distinguished by the fact that the nonlinear features are compensated in a damped manner rather than canceled. To achieve the required dynamic, the fuzzy controller is used, which ensures quick convergence and global stability of the closed loop system. The development of the maximum power collected, the lowered fixed gains, and the real-time application of the control method are the primary contributions and novelties. The primary objectives of this project are to manage DC voltage and attain adequate reactive power levels in order to provide dependable and efficient electricity to the grid. The proposed scheme is being used to regulate the MSC, while the grid-side employs a traditional proportional-integral method. The efficiency of the suggested technique is investigated numerically using MATLAB/Simulink software. Furthermore, the processor-in-the-loop (PIL) tests are carried out to demonstrate that the suggested regulator is practically implementable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.