In this paper, we explore the notion of kinematic convexity for rigid body displacements. Previously, we have shown that when spatial rigid body displacements are represented by dual quaternions, an oriented projective space is better suited for the image space of displacements. Geometric algorithms for rigid body motions become more general and elegant when developed from the perspective of oriented projective geometry. By extending the concept of convexity in affine geometry to oriented projective geometry of the image space of rigid body displacements, we define the concept of kinematic convexity. This concept, apart from being theoretically significant, facilitates localization of a displacements and provides a measure of the kinematic separation useful in collision prediction, interference checking, and geometric analysis of swept volumes.
In recent years, it has become well known that rational Bézier and B-spline curves in the space of dual quaternions correspond to rational Bézier and B-spline motions. However, the influence of weights of these dual quaternion curves on the resulting rational motions has been largely unexplored. In this paper, we present a thorough mathematical exposition on the influence of dual-number weights associated with dual quaternions for rational motion design. By deriving the explicit equations for the point trajectories of the resulting motion, we show that the effect of real weights on the resulting motion is similar to that of a rational Bézier curve and how the change in dual part of a dual-number weight affects the translational component of the motion. We also show that a rational Bézier motion can be reparameterized in a manner similar to a rational Bézier curve. Several examples are presented to illustrate the effects of the weights on rational motions.
In this paper, we present an interactive, visual design approach for the dimensional synthesis of planar 6R single-loop closed chains for a given rational motion using constraint manifold modification. This approach is implemented in an interactive software tool that provides mechanism designers with an intuitive way to determine the parameters of planar mechanisms, and in the process equips them with an understanding of the design process. The theoretical foundation of this work is based on representing planar displacements with planar quaternions, which can be seen as points in a special higher dimensional projective space (called the image space), and on formulating the kinematic constraints of closed chains as algebraic surfaces in the image space. Kinematic constraints under consideration limit the positions and orientation of the coupler in its workspace. In this way, a given motion of a mechanism in the Cartesian space maps to a curve in the image space that is limited to stay within the bounds of the algebraic surfaces. Thus, the problem of dimensional synthesis is reduced to determine the parameters of equations that describe algebraic surfaces. We show that the interactive approach presented here is general in nature, and can be easily used for the dimensional synthesis of any mechanism for which kinematic constraints can be expressed algebraically. The process of designing is fast, intuitive, and especially useful when a numerical optimization based approach would be computationally demanding and mathematically difficult to formulate. This simple approach also provides a basis for students and early designers to learn and understand the process of mechanism design by simple geometric manipulations.
This paper studies the problem of planar four-bar motion generation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the image space of planar displacements, we obtain a class of quadrics, called generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using singular value decomposition (SVD). The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.