Summary
HIV-1 entry into host cells starts with interactions between the viral envelope glycoprotein (Env) and cellular CD4 receptors and coreceptors. Previous work has suggested that efficient HIV entry also depends on intracellular signaling but this remains controversial. Here we report that formation of the pre-fusion Env–CD4–coreceptor complexes triggers non-apoptotic cell surface exposure of the membrane lipid phosphatidylserine (PS). HIV-1-induced PS redistribution depends on Ca2+ signaling triggered by Env-coreceptor interactions and involves the lipid scramblase TMEM16F. Externalized PS strongly promotes Env-mediated membrane fusion and HIV-1 infection. Blocking externalized PS or suppressing TMEM16F inhibited Env-mediated fusion. Exogenously added PS promoted fusion, with fusion dependence on PS being especially strong for cells with low surface density of coreceptors. These findings suggest that cell-surface PS acts as an important cofactor that promotes the fusogenic restructuring of pre-fusion complexes and likely focuses the infection on cells conducive to PS signaling.
Cells productively infected with HIV-1 release virions along with extracellular vesicles (EVs) whose biogenesis, size, and physical properties resemble those of retroviruses. Here, we found that a significant number of EVs (exosomes) released by HIV-1 infected cells carry gp120 (Env), a viral protein that mediates virus attachment and fusion to target cells, and also facilitates HIV infection in various indirect ways. Depletion of viral preparations of EVs, in particular of those that carry gp120, decreases viral infection of human lymphoid tissue ex vivo. Thus, EVs that carry Env identified in our work seem to facilitate HIV infection and therefore may constitute a new therapeutic target for antiviral strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.