NK cells are essential for health, yet little is known about human NK turnover in vivo. In both young and elderly women, all NK subsets proliferated and died more rapidly than T cells. CD56bright NK cells proliferated rapidly but died relatively slowly, suggesting that proliferating CD56bright cells differentiate into CD56dim NK cells in vivo. The relationship between CD56dim and CD56bright proliferating cells indicates that proliferating CD56dim cells both self-renew and are derived from proliferating CD56bright NK cells. Our data suggest that some dying CD56dim cells become CD16+CD56− NK cells and that CD16−CD56low NK cells respond rapidly to cellular and cytokine stimulation. We propose a model in which all NK cell subsets are in dynamic flux. About half of CD56dim NK cells expressed CD57, which was weakly associated with low proliferation. Surprisingly, CD57 expression was associated with higher proliferation rates in both CD8+ and CD8− T cells. Therefore, CD57 is not a reliable marker of senescent, nonproliferative T cells in vivo. NKG2A expression declined with age on both NK cells and T cells. Killer cell Ig-like receptor expression increased with age on T cells but not on NK cells. Although the percentage of CD56bright NK cells declined with age and the percentage of CD56dim NK cells increased with age, there were no significant age-related proliferation or apoptosis differences for these two populations or for total NK cells. In vivo human NK cell turnover is rapid in both young and elderly adults.
Acute myocardial infarction (AMI) triggers mobilization of stem cells from bone marrow (BM) into peripheral blood (PB). Based on our observation that the bioactive sphingophospholipids, sphingosine-1 phosphate (S1P), and ceramide-1 phosphate (C1P) regulate trafficking of hematopoietic stem cells (HSCs), we explored whether they also direct trafficking of non-hematopoietic stem cells (non-HSCs). We detected a 3-6-fold increase in circulating CD34 + , CD133 + , and CXCR4 + lineage-negative (Lin -)/CD45 -cells that are enriched in nonHSCs [including endothelial progenitors (EPCs) and very small embryonic-like stem cells (VSELs)] in PB from AMI patients (P < 0.05 vs. controls). Concurrently, we measured a *3-fold increase in S1P and C1P levels in plasma from AMI patients. At the same time, plasma obtained at hospital admission and 6 h after AMI strongly chemoattracted human BM-derived CD34 + /Lin -and CXCR4 + /Lin -cells in Transwell chemotaxis assays. This effect of plasma was blunted after depletion of S1P level by charcoal stripping and was further inhibited by the specific S1P1 receptor antagonist such as W146 and VPC23019. We also noted that the expression of S1P receptor 1 (S1P1), which is dominant in naïve BM, is reduced after the exposure to S1P at concentrations similar to the plasma S1P levels in patients with AMI, thus influencing the role of S1P in homing to the injured myocardium. Therefore, we examined mechanisms, other than bioactive lipids, that may contribute to the homing of BM non-HSCs to the infarcted myocardium. Hypoxic cardiac tissue increases the expression of cathelicidin and b-2 defensin, which could explain why PB cells isolated from patients with AMI migrated more efficiently to a low, yet physiological, gradient of stromal-derived factor-1 in Transwell migration assays. Together, these observations suggest that while elevated S1P and C1P levels early in the course of AMI may trigger mobilization of non-HSCs into PB, cathelicidin and b-2 defensin could play an important role in their homing to damaged myocardium.
In this study, the mechanism by which second-sphere residues modulate the structural and electronic properties of substrate-analogue complexes of the Fe-dependent superoxide dismutase (FeSOD) has been explored. Both spectroscopic and computational methods were used to investigate the azide (N3(-)) adducts of Fe(3+)SOD (N3-Fe(3+)SOD) and its Q69E mutant, as well as Fe(3+)-substituted MnSOD (N3-Fe(3+)(Mn)SOD) and its Y34F mutant. Electronic absorption, circular dichroism, and magnetic circular dichroism spectroscopic data reveal that the energy of the dominant N3(-)-->Fe(3+) ligand-to-metal charge transfer (LMCT) transition decreases in the order N3-Fe(3+)(Mn)SOD>N3-Fe(3+)SOD>Q69E N3-Fe(3+)SOD. Intriguingly, the LMCT transition energies correlate almost linearly with the Fe(3+/2+) reduction potentials of the corresponding Fe(3+)-bound SOD species in the absence of azide, which span a range of approximately 1 V (see the preceding paper). To explore the origin of this correlation, combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations were performed on complete enzyme models. The INDO/S-CI computed electronic transition energies satisfactorily reproduce the experimental trend in LMCT transition energies, indicating that the QM/MM optimized active-site models are reasonable. Density functional theory calculations on these experimentally validated active-site models reveal that the differences in spectral and electronic properties among the four N 3(-) adducts arise primarily from differences in the hydrogen-bond network involving the conserved second-sphere Gln (mutated to Glu in Q69E FeSOD) and the solvent ligand. The implications of our findings with respect to the mechanism by which the second-coordination sphere modulates substrate-analogue binding as well as the catalytic properties of FeSOD are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.