BackgroundThe combined influence of life-history strategy and resource dispersion on dispersal evolution of a biological community, and by extension, on community assemblage, has received sparse attention. Highly specialized fig wasp communities are ideal for addressing this question since the life-history strategies that affect their pace of life and the dispersion of their oviposition resources vary. We compared dispersal capacities of the wasp community of a widespread tropical fig, Ficus racemosa, by measuring flight durations, somatic lipid content and resting metabolic rates.ResultsWasp species exhibiting greater flight durations had higher energy reserves and resting metabolic rates. “Fast”-paced species showed higher dispersal capacities reflecting requirements for rapid resource location within short adult lifespans. Longer-lived “slow”-paced species exhibited lower dispersal capacities. Most dispersal traits were negatively related with resource dispersion while their variances were positively related with this variable, suggesting that resource dispersion selects for dispersal capacity. Dispersal traits exhibited a phylogenetic signal.ConclusionsUsing a combination of phylogeny, trait functionality and community features, we explain how dispersal traits may have co-evolved with life-history strategies in fig wasps and influenced a predisposition for dispersal. We speculate how processes influencing dispersal trait expression of community members may affect resource occupancy and community assemblage.Electronic supplementary materialThe online version of this article (10.1186/s40462-017-0117-x) contains supplementary material, which is available to authorized users.
Communities in which species are obligately associated with a single host are ideal to test adaptive responses of community traits to host-imposed selection because such communities are often highly insulated. Fig species provide oviposition resources to co-evolved fig-wasp communities. Dispersing fig-waspcommunities move from one host plant to another for oviposition. We compared the spatial dispersion of two fig species and the dispersal capacities of their multitrophic wasp communities. Dispersal capacities were assessed by measuring vital dispersal correlates, namely tethered flight durations, somatic lipid contents and resting metabolic rates. We suggest that dispersal-trait distributions of congeneric wasp species across the communities are an adaptive response to host plant dispersion. Larger dispersal capacities of the entire multitrophic community are related to more widely dispersed resources. Our results provide evidence and a novel perspective for understanding the potential role of adaptation in whole-community dispersal-trait distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.