Abstract-This work focuses on proposing a new structure for asymmetric multilevel inverter. In the proposed topology, a switched capacitor (SC) and conventional series inverter are combined and connected in cascade. The proposed multilevel inverter finds its application in photovoltaic inverters which has numerous advantages. Firstly, it converts power for AC requirements from comparatively low DC voltage sources and with lower number of switching devices. Second, with the removal of transformers normally used for stepping up the voltage of each inverter stage the weight, volume and size of the whole system is reduced as the proposed topology can double the input voltage without a transformer. Symmetrical step control method (SSCM) and fundamental switching frequency method (FSFM) are applied to this proposed topology to actuate the power electronic switches for effective control and monitoring of voltage levels generated at the output. The simulation is executed using MATLAB/SIMULINK software. It was found that FSFM modulation technique results in a lower value of Total Harmonic Distortion (THD). The switching strategy is implemented with an FPGA device for the experimental prototype. The simulation and experimental result of single-phase 25-level inverter is given to demonstrate the precise operation of the suggested topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.