Detection of plant leaf disease has been considered an interesting research field which is helpful to improve the crop and fruit yield. Computer vision and machine learning based approaches have gained huge attraction in digital image processing field. Several visual computing based techniques have been presented in the past for early prediction of plant leaf diseases. However, detection accuracy is still considered as a challenging task. Hence, in order to overcome this issue, we introduce a novel hybrid approach carried out in three forms. During the first phase, image enhancement and image conversion scheme are incorporated, which helps to overcome the low-illumination and noise related issues. In the next phase, a combined feature extraction technique is developed by using GLCM, Complex Gabor filter, Curvelet and image moments. Finally, a Neuro-Fuzzy Logic classifier is trained with the extracted features. The proposed approach is implemented using MATLAB simulation tool where PlantVillage Database is considered for analysis. The average detection accuracy has been obtained as more than 90% for 2 test cases which shows that the proposed combination of feature extraction and image pre-processing process is able to obtain improved classification accuracy. This work is useful for the students of UG/PG programme to carry out Project-based learning.
This work describes an efficient algorithm for linear coordinate transformation developed specifically for a tiled image processing system. A detailed description of the algorithm is presented, and its performance is compared with that of other techniques. The effect of image size on relative performance is analyzed and correlated with the tile-based storage technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.