COVID-19 risk increases with comorbidities, and the effect is magnified due to the contribution of individual and combined comorbidities to the overall clinical outcomes. We aimed to explore the influence of demographic factors, clinical manifestations, and underlying comorbidities on mortality, severity, and hospital stay in COVID-19 patients. Therefore, retrospective chart reviews were performed to identify all laboratory-confirmed cases of SARS-CoV-2 infection in Apollo Hospitals, Hyderabad, between March 2020 and August 2020.A total of 369 confirmed SARS-CoV-2 cases were identified: 272 (73.7%) patients were male, and 97 (26.2%) were female. Of the confirmed cases, 218 (59.1%) had comorbidities, and 151 (40.9%) were devoid of comorbidities. This study showed that old age and underlying comorbidities significantly increase mortality, hospital stay, and severity due to COVID-19 infection. The presence of all four comorbidities, diabetes mellitus DM + Hypertension HTN + coronary artery disease CAD + chronic kidney disease CKD , conferred the most severity (81%). The highest mortality (OR: 44.03, 95% CI: 8.64-224.27) was observed during the hospital stay ( 12.73 ± 11.38 ; 95% CI: 5.08-20.38) in the above group. Multivariate analysis revealed that nonsurvivors are highest (81%) in ( DM + HTN + CAD + CKD ) category with an odds ratio (95% CI) of 44.03 (8.64-224.27). Age, gender, and comorbidities adjusted odds ratio decreased to 20.25 (3.77-108.77). Median survival of 7 days was observed in the ( DM + HTN + CAD + CKD ) category. In summary, the presence of underlying comorbidities has contributed to a higher mortality rate, greater risk of severe disease, and extended hospitalization periods, hence, resulting in overall poorer clinical outcomes in hospitalized COVID-19 patients.
Objective. We intend to identify differences in the clinicodemographic and laboratory findings of COVID-19 patients to predict disease severity and outcome on admission. Methods. This single-centred retrospective study retrieved laboratory and clinical data from 350 COVID-19 patients on admission, represented as frequency tables. A multivariate regression model was used to assess the statistically significant association between the explanatory variables and COVID-19 infection outcomes, where adjusted odds ratio (AOR), p value, and 95% CI were used for testing significance. Results. Among the 350 COVID-19 patients studied, there was a significant increase in the WBC count, neutrophils, aggregate index of systemic inflammation (AISI), neutrophil-to-lymphocyte ratio (dNLR), neutrophil-to-lymphocyte and platelet ratio (NLPR), monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), D-dimer, interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), prothrombin time (PT), glucose, urea, urea nitrogen, creatinine, alanine phosphatase (ALP), and aspartate aminotransferase (AST) and a significant decrease in lymphocytes, eosinophils, total protein, albumin, prealbumin serum, and albumin/globulin (A/G) ratio in the severe group when compared with the mild and moderate groups. However, after adjusting their age, gender, and comorbidities, WBC count (adjusted odds ratio AOR = 6.888 , 95% CI = 1.590 -29.839, p = 0.010 ), neutrophils ( AOR = 5.912 , 95% CI = 2.131 -16.402, p = 0.001 ), and urea ( AOR = 4.843 , 95% CI = 1.988 -11.755, p = 0.001 ) were strongly associated with disease severity. Interpretation and Conclusion. On admission, WBC count, neutrophils, and urea, with their cut of values, can identify at-risk COVID-19 patients who could develop severe COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.