Mayaro virus (MAYV) causes an acute febrile illness similar to that produced by chikungunya virus (CHIKV), an evolutionary relative in the Semliki Forest virus complex of alphaviruses. MAYV emergence is typically sporadic, but recent isolations and outbreaks indicate that the virus remains a public health concern. Given the close phylogenetic and antigenic relationship between CHIKV and MAYV, and widespread distribution of CHIKV, we hypothesized that prior CHIKV immunity may affect MAYV pathogenesis and/or influence its emergence potential. We pre-exposed immunocompetent C57BL/6 and immunocompromised A129 or IFNAR mice to wild-type CHIKV, two CHIKV vaccines, or a live-attenuated MAYV vaccine, and challenged with MAYV. We observed strong cross-protection against MAYV for mice pre-exposed to wild-type CHIKV, and moderately but significantly reduced cross-protection from CHIKV-vaccinated animals. Immunity to other alphavirus or flavivirus controls provided no protection against MAYV disease or viremia. Mechanistic studies suggested that neutralizing antibodies alone can mediate this protection, with T-cells having no significant effect on diminishing disease. Finally, human sera obtained from naturally acquired CHIKV infection cross-neutralized MAYV at high titers in vitro. Altogether, our data suggest that CHIKV infection can confer cross-protective effects against MAYV, and the resultant reduction in viremia may limit the emergence potential of MAYV.
Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply, and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates thousands-diverse mixtures of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors, or immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in under three months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin (ATG), we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.
Background Several studies have demonstrated neutralizing antibodies to be highly effective against alphavirus infection in animal models, both prophylactically and remedially. In most studies, neutralizing antibodies have been evaluated for their ability to block viral entry in vitro but recent evidence suggests that antibody inhibition through other mechanisms, including viral budding/release, significantly contributes to viral control in vivo for a number of alphaviruses. Results We describe a BSL-2, cell-based, high-throughput screening system that specifically screens for inhibitors of alphavirus egress using chikungunya virus (CHIKV) and Mayaro virus (MAYV) novel replication competent nano-luciferase (nLuc) reporter viruses. Screening of both polyclonal sera and memory B-cell clones from CHIKV immune individuals using the optimized assay detected several antibodies that display potent anti-budding activity. Conclusions We describe an “anti-budding assay” to specifically screen for inhibitors of viral egress using novel CHIKV and MAYV nLuc reporter viruses. This BSL-2 safe, high-throughput system can be utilized to explore neutralizing “anti-budding” antibodies to yield potent candidates for CHIKV and MAYV therapeutics and prophylaxis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.