Green chemistry and sustainability
have garnered more awareness
in the chemical industry in recent years, but green chemistry classes
are still not commonplace for either the undergraduate or graduate
student curriculum. Additionally, many departments are seeking avenues
to reach greater numbers and types of learners through online courses.
To address both needs, a small group of chemistry graduate students
set out to design a 3-credit-hour upper-level online green chemistry
course targeted at students most likely to apply green chemistry concepts
in their future careers. The goals for the course included education
in the basics of green chemistry (history, metrics, methodologies)
along with opportunities to apply what they have learned and communicate
it to a general audience. This process of developing modules and assessments
for the discovery and application of green chemistry principles has
enabled a supplementary education for the graduate students as well.
Herein, the specific motivations of the graduate students to design
the course, how green chemistry was presented to students in an online
format, and how students responded to this type of class are provided.
Irradiation of 3-methyl-2-phenyl-2H-azirine (1) at 254 nm in argon matrices results in ylide 6. Similarly, laser flash photolysis (λ = 266 nm) of azirine 1 in acetonitrile yields ylide 6, which has a transient absorption with λmax at ~340 nm and a lifetime of 14 μs. Density functional theory calculations were preformed to support the characterisation of ylide 6 in solution and argon matrices. Irradiation of azirine 1 above 300 nm has previously been reported (J. Org. Chem. 2014, 79, 653) to yield triplet vinylnitrene in solution and ketenimine in cryogenic argon matrices. Thus, the photochemistry of azirine 1 is dependent on the irradiation wavelength.
Photolysis of ester 1 in argon-saturated methanol and acetonitrile does not produce any product, whereas irradiation of 1 in oxygen-saturated methanol yields peroxide 2. Laser flash photolysis studies demonstrate that 1 undergoes intramolecular H atom abstraction to form biradical 3 (λmax ~340 nm), which intersystem crosses to form photoenols Z-4 and E-4 (λmax ~380 nm). Photoenols 4 decay by regenerating ester 1. With the aid of density functional theory calculations, it was concluded the photoenol E-4 does not undergo spontaneous lactonization or electrocyclic ring closure because the transition state barriers for these reactions are too large to compete with reketonization of E-4 to form 1.
Irradiation of nanocrystals of azide 1 results in a solid-to-solid reaction that forms imine 2 in high chemical yield. In contrast, solution photolysis of azide 1 yields a mixture of products, with 7 as the major one. Laser flash photolysis (LFP) of a nanocrystalline suspension of azide 1 in water shows selective formation of benzoyl radical 4 (λ ∼ 400 nm), which is short-lived (τ = 833 ns) as it intersystem crosses to form imine 2. In comparison, LFP of azide 1 in methanol reveals the formation of triplet alkylnitrene 10 (λ ∼ 340 nm). The selectivity observed in the solid-state is related to stabilization of the triplet ketone with (n,π*) configuration by the crystal lattice, which results in α-cleavage being favored over triplet energy transfer to the azido chromophore. Both the solid-state and solution reaction mechanisms are further supported by density functional theory calculations. Thus, laser flash photolysis has been used to effectively elucidate the medium dependent reaction mechanisms of azide 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.