A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
Multiple studies have identified conserved genetic pathways and small molecules associated with extension of lifespan in diverse organisms. However, extending lifespan does not result in concomitant extension in healthspan, defined as the proportion of time that an animal remains healthy and free of age-related infirmities. Rather, mutations that extend lifespan often reduce healthspan and increase frailty. The question arises as to whether factors or mechanisms exist that uncouple these processes and extend healthspan and reduce frailty independent of lifespan. We show that indoles from commensal microbiota extend healthspan of diverse organisms, including Caenorhabditis elegans, Drosophila melanogaster, and mice, but have a negligible effect on maximal lifespan. Effects of indoles on healthspan in worms and flies depend upon the aryl hydrocarbon receptor (AHR), a conserved detector of xenobiotic small molecules. In C. elegans, indole induces a gene expression profile in aged animals reminiscent of that seen in the young, but which is distinct from that associated with normal aging. Moreover, in older animals, indole induces genes associated with oogenesis and, accordingly, extends fecundity and reproductive span. Together, these data suggest that small molecules related to indole and derived from commensal microbiota act in diverse phyla via conserved molecular pathways to promote healthy aging. These data raise the possibility of developing therapeutics based on microbiota-derived indole or its derivatives to extend healthspan and reduce frailty in humans.C. elegans | aging | frailty | aryl hydrocarbon receptor | microbiota R ecent advances in health care have contributed to a significant increase in life expectancy of individuals, especially in developed countries, which predict an expansion of geriatric populations by as much as 350-fold over the next 40 y (1). However, extension of lifespan is often accompanied by increased frailty, and attendant increases in global healthcare expenditures are expected to be both massive and unsustainable (2). Such data highlight the need to develop means to extend healthspan, which is broadly defined as the length of time that an individual remains healthy and free of age-related infirmities (3, 4).Healthspan has often been convolved with lifespan, and extended healthspan has been associated with slowed onset of normal age-related changes (e.g., sarcopenia). Thus, mutations that extend lifespan might be expected to likewise extend healthspan. Recent studies in Caenorhabditis elegans indicate that, relative to wild-type animals, mutations that extend lifespan do indeed extend the period of youthfulness, in which animals are motile and resistant to bacterial infection (healthspan), but also extend the period of decrepitude or frailty, where animals are relatively immobile (5, 6) Other studies in C. elegans that take into account multiple measures of health, each normalized to maximal lifespan, indicate that mutations or conditions that extend lifespan minimally impact or ev...
A combination of vaccination approaches will likely be necessary to fully control the SARS-CoV-2 pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane anchored pre-fusion stabilized spike (MVA/S), but not secreted S1, induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8 + T cell responses, and showed protection from SARS-CoV-2 infection and virus replication in the lung as early as day 2 following intranasal or intratracheal challenge. Single-cell RNA sequencing analysis of lung cells at day 4 post-infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities, and lowered induction of interferon stimulated genes. These results demonstrate that MVA/S vaccination induces both neutralizing antibodies and CD8 + T cells in the blood and lung and serves as a potential vaccine candidate against SARS-CoV-2.
Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the X-ray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists.DOI: http://dx.doi.org/10.7554/eLife.09532.001
There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.