Dispersion of calcium oxide on high surface area γ-Al2O3 creates a stable and reversible CO2−sorbent that overcomes the problems associated with bulk CaO, such as limited long-term stability, slow uptake kinetics, and energy-intensive regeneration. This sorbent is a candidate for the sorption-enhanced hydrogen production via steam reforming and/or water-gas shift reactions. CO2 uptake tests were performed in a 15% CO2/N2 atmosphere to evaluate the efficacy at typical hydrocarbon reformer gas partial pressure. CO2 uptake kinetics and capacities are investigated in TGA studies, while the long-term stability is shown in multicycle experiments. The dispersed CaO is an active sorbent at low temperatures and binds CO2 at 300 °C up to 1.7 times as efficiently as compared to bulk CaO powder. Furthermore, the sorbent can be regenerated in a CO2-free atmosphere at intermediate temperatures between 300 and 650 °C. Multicycle CO2 uptake and release has been tested for 84 cycles at a constant temperature of 650 °C and shows the superior long-term stability of dispersed CaO as compared to bulk CaO. The attempt to increase the uptake capacity from 0.16 to 0.22 mmol CO2 per gram of sorbent occurred with a commensurate loss in BET area from 115 to 41 m2, leading to a decline in overall uptake efficiency from 15% to 6%. Infrared spectroscopy is used to characterize the CO2−sorbent binding interaction on a molecular level and to distinguish between CO2 adsorbing on the bare support, on bulk CaO, and on dispersed CaO/Al2O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.