in Wiley InterScience (www.interscience.wiley.com).The effects of woody biomass mixtures were investigated on the rates of hemicellulose hydrolysis by dilute acid. Very good agreement between the model predictions and single species acid hydrolysis data confirmed the validity of a pseudo first-order model approach. This model was then utilized to predict monomer sugar concentrations for mixtures of hardwood (aspen, basswood, and red maple), a softwood (balsam), and the energy crop switchgrass, with very good agreement. The results of this study show that there are not significant synergistic or antagonistic effects by mixtures of woody biomass species on the kinetics of hemicellulose hydrolysis by dilute acid. Kinetic parameters were developed for each woody biomass species with xylose formation activation energies ranging from 76.19-171.20 kJ/mol, and pre-exponential factors ranging from 2.19 3 10 8 -7.73 3 10 19 min 21 . Overall xylose yields for pure biomass species ranged from approximately 66-88% with balsam having the lowest yield and switchgrass producing the highest yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.