Buck power factor correction (PFC) converter is widely used for a broad range of AC/DC applications because of its many advantages However, the traditional discontinuous conduction mode (DCM) buck power factor correction converter (PFC) operates on constant duty-cycle control (CDCC) scheme, due to which its input power factor (PF) is low. For improving PF near to unity, a variable-duty-cycle control (VDCC) method has been proposed. Fitting duty-cycle method is also introduced to make circuit implementation easier. For verifying the validity of proposed technique, the simulation results are carried out.
This study explores the impact of runoff curve number (CN) on the hydrological model outputs for the Morai watershed, Sindh-Pakistan, using the Soil Conservation Service Curve Number (SCS-CN) method. The SCS-CN method is an empirical technique used to estimate rainfall-runoff volume from precipitation in small watersheds, and CN is an empirically derived parameter used to calculate direct runoff from a rainfall event. CN depends on soil type, its condition, and the land use and land cover (LULC) of an area. Precise knowledge of these factors was not available for the study area, and therefore, a range of values was selected to analyze the sensitivity of the model to the changing CN values. Sensitivity analysis involves a methodological manipulation of model parameters to understand their impacts on model outputs. A range of CN values from 40-90 was selected to determine their effects on model results at the sub-catchment level during the historic flood year of 2010. The model simulated 362 cumecs of peak discharge for CN=90; however, for CN=40, the discharge reduced substantially to 78 cumecs (a 78.46% reduction). Event-based comparison of water volumes for different groups of CN values—90-75, 80-75, 75-70, and 90-40 —showed reductions in water availability of 8.88%, 3.39%, 3.82%, and 41.81%, respectively. Although it is known that the higher the CN, the greater the discharge from direct runoff and the less initial losses, the sensitivity analysis quantifies that impact and determines the amount of associated discharges with changing CN values. The results of the case study suggest that CN is one of the most influential parameters in the simulation of direct runoff. Knowledge of accurate runoff is important in both wet (flood management) and dry periods (water availability). A wide range in the resulting water discharges highlights the importance of precise CN selection. Sensitivity analysis is an essential facet of establishing hydrological models in limited data watersheds. The range of CNs demonstrates an enormous quantitative consequence on direct runoff, the exactness of which is necessary for effective water resource planning and management. The method itself is not novel, but the way it is proposed here can justify investments in determining the accurate CN before initiating mega projects involving rainfall-runoff simulations. Even a small error in CN value may lead to serious consequences. In the current study, the sensitivity analysis challenges the strength of the results of a model in the presence of ambiguity regarding CN value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.