Intracavernous injection of Trimix (Tx) is indicated for patients unsuitable for prostaglandin E 1 (PgE 1 ) injection due to lack of response, pain or cost. We believe that the ideal ratio of ingredient doses in Tx is yet to be found. We postulated that increasing the doses of individual drug components in an orderly manner would convey important data on penile hemodynamic response. Such information is needed to choose an effective and less costly alternative to PgE 1 with least side effects. We set out to evaluate the impact of varying the ingredient dosage on response and shortterm safety of Tx compared with PgE 1 . We prospectively randomized 180 consecutive patients with erectile dysfunction into nine equal groups and each group received a different dose of Tx, namely phentolamine (1 mg) plus one dose of PgE 1 (2.5, 5 or 10 lg) and one dose of papaverine (5, 10 or 20 mg). Each patient was injected with 20 lg PgE 1 and one dose of Tx in two clinic visits 1 week apart. Following injection, duplex ultrasound of cavernous arteries and axial rigidometry were carried out. Patients ranked the quality of erection, estimated overall satisfaction and reported time to detumescence and side effects. Patients' mean age was 50.5711.7 y with underlying organic condition in 91.1%. There were no significant differences between PgE 1 and Tx with regard to peak cavernous artery flow, time to erection, patients' satisfaction, average axial rigidity and pain. PgE 1 produced higher end diastolic velocity, shorter duration of erection and less priapism. Patients did not show a preference for either drug or any particular dosage. We conclude that even at the smallest dose of ingredients of Tx, there are no significant differences in hemodynamic effects, rigidity, pain and self-satisfaction between the two drugs. However, Tx produces a longer duration of erection and more priapism than PgE 1 .
Aim: We describe the rare case of a woman with adrenal intravascular papillary endothelial hyperplasia (IPEH) or Masson's tumor. We present relevant background information on IPEH and our case report, as well as describe a workup and treatment plan for the lesion.
1172 Background: Low molecular weight heparins (LMWHs) are complex biologic drugs that exhibit heterogeneity in terms of saccharide chain length and in the composition (sulfate, acetyl), content, and location of functional groups. Such heterogeneity impacts the biologic activity of LMWHs as there is a certain threshold chain length required for thrombin inhibitory activity and a particular sequence is required for interaction with antithrombin. In July 2010 the US Food and Drug Administration published requirements necessary to demonstrate the ‘sameness’ of generic LMWHs with the originator LMWH. We undertook this study to compare the primary anticoagulant effect of thrombosis prevention and the primary adverse effect of bleeding of two FDA approved generic enoxaparins. Methods: Four batches of commercially available Sandoz US generic enoxaparin (Princeton, NJ) and two batches of Watson US generic enoxaparin (Parsippany, NJ) were compared. All products were obtained from hospital pharmacies as pre-filled syringes containing 40 mg of the drugs. The molecular weight profile of each batch was determined by HPLC in relation to well-defined heparin fractions and by utilizing the US Pharmacopeia method. In vitro activity was determined by supplementing each LMWH batch to normal human plasma over a range of concentrations (0–10 mg/ml) and analyzing these samples using aPTT, anti-FXa and anti-FIIa assays. Hemorrhagic activity was measured using a rat tail transection model five minutes after administration of a 2 mg/kg intravenous dose (n=8 rats/batch). Upon completion of the bleeding model, antithrombotic activity was assessed using a jugular vein clamping model (∼90 minutes post-dosing). Blood samples collected from treated rats were used to estimate circulating blood levels of LMWH using anti-FXa and anti-FIIa assays. Results: The two groups of generic enoxaparins exhibited a similar molecular weight profile with mean molecular weights of 4,270 ± 20 Da for the Sandoz products and 4,420 ± 80 Da for the Watson products. In vitro activities were similar between batches of the same product, but the individual products differed considerably (p=0.01). In the aPTT and anti-FIIa assays, the Watson LMWH produced significantly more activity than the Sandoz LMWH at concentrations ≥5 μg/ml. At 5 μg/ml, a clotting time of 74.0 ± 16.6 sec was observed with Watson batches compared to clotting times ranging from 52.9 to 54.9 sec for Sandoz LMWHs. While a similar pattern was observed with the anti-FXa assay, the differences between products were not statistically significant. In the bleeding model, all LMWHs prolonged the bleeding time compared to vehicle control. One batch of the Watson LMWH, however, produced a significantly longer bleeding time compared to all other samples tested (33.8 ± 5.1 min vs. a range of 11.9 ± 2.4 to 18.3 ± 4.3 minutes for the other samples; p=0.003). The same batch produced significantly more antithrombotic activity (6.3 ± 0.7 clampings) compared to the other samples (range of 4.0 ± 0.6 to 4.6 ± 0.5 clampings; p<0.001). One batch of Sandoz LMWH produced a significantly smaller prolongation of bleeding time compared to other samples. Circulating drug levels determined by anti-FXa and anti-FIIa activities were comparable in all treatment groups but did not appear to correlate with hemorrhagic or antithrombotic activities. Conclusion: The expectation was that all batches of all generic enoxaparins would produce the same in vitro, in vivo, and ex vivo outcomes. The findings of this study suggest that incorporation of traditional animal models in the development of generic enoxaparins may be of value as multiple biological effects of LMWHs, not fully addressed with the anti-FXa and anti-FIIa activities, contribute to the overall antithrombotic activity of these LMWHs. This study demonstrates that all generic enoxaparins available today may not necessarily be the same. These findings underscore the importance of in vivo studies in animal models to demonstrate the bioequivalence of the generic products. Disclosures: Jeske: Sanofi-Aventis, Paris, France: Research Funding. Walenga:Sanofi-Aventis, Paris, France: Research Funding. Escalante:Sanofi-Aventis, Paris, France: Research Funding. Hoppensteadt:Sanofi-Aventis, Paris, France: Research Funding. Cunanan:Sanofi-Aventis, Paris, France: Research Funding. Kahn:Sanofi-Aventis, Paris, France: Research Funding. Paulus:Sanofi-Aventis, Paris, France: Research Funding. Fareed:Sanofi-Aventis, Paris, France: Research Funding. Bakhos:Sanofi-Aventis, Paris, France: Research Funding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.