Background: Antimicrobial resistance is rising globally at an alarming rate. While multiple active surveillance programs have been established to monitor the antimicrobial resistance, studies on the environmental link to antimicrobial spread are lacking. Methods: A total of 493 flies were trapped from a dairy unit, a dog kennel, a poultry farm, a beef cattle unit, an urban trash facility and an urban downtown area to isolate Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. for antimicrobial susceptibility testing and molecular characterization. Results: E. coli, K. pneumoniae and coagulase-negative Staphylococcus were recovered from 43.9%, 15.5% and 66.2% of the houseflies, and 26.0%, 19.2%, 37.0% of the blowflies, respectively. In total, 35.3% of flies were found to harbor antimicrobial-resistant bacteria and 9.0% contained multidrug-resistant isolates. Three Staphylococcus aureus isolates were recovered from blowflies while three extended spectrum beta lactamase (ESBL)-carrying E. coli and one ESBL-carrying K. pneumoniae were isolated from houseflies. Whole genome sequencing identified the antimicrobial resistance genes blaCMY-2 and blaCTXM-1 as ESBLs. Conclusion: Taken together, our data indicate that flies can be used as indicators for environmental contamination of antimicrobial resistance. More extensive studies are warranted to explore the sentinel role of flies for antimicrobial resistance.
Flies are well-known vectors of bacterial pathogens, but there are little data on their role in spreading microbial community and antimicrobial resistance. In this study, we compared the bacterial community, antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in flies with those in the feces of sympatric animals. A 16S rRNA-based microbial analysis identified 23 bacterial phyla in fecal samples and 25 phyla in flies; all the phyla identified in the fecal samples were also found in the flies. Bray–Curtis dissimilarity analysis showed that the microbiota of the flies were more similar to the microbiota of the feces of their sympatric animals than those of the feces from the three other animal species studied. The qPCR array amplified 276 ARGs/MGEs in fecal samples, and 216 ARGs/MGEs in the flies, while 198 of these genes were identified in both flies and feces. Long-term studies with larger sample numbers from more geospatially distinct populations and infection trials are indicated to further evaluate the possibility of flies as sentinels for antimicrobial resistance.
Resistance to last resort drugs such as carbapenem and colistin is a serious global health threat. This study investigated carbapenem and colistin resistance in 583 non-duplicate Enterobacteriaceae isolates utilizing phenotypic methods and whole genome sequencing (WGS). Of the 583 isolates recovered from humans, animals and the environment in Nigeria, 18.9% (110/583) were resistant to at least one carbapenem (meropenem, ertapenem, and imipenem) and 9.1% (53/583) exhibited concurrent carbapenem-colistin resistance. The minimum inhibitory concentrations of carbapenem and colistin were 2–32 μg/mL and 8 to >64 μg/mL, respectively. No carbapenem resistant isolates produced carbapenemase nor harbored any known carbapenemase producing genes. WGS supported that concurrent carbapenem-colistin resistance was mediated by novel and previously described alterations in chromosomal efflux regulatory genes, particularly mgrB (M1V) ompC (M1_V24del) ompK37 (I70M, I128M) ramR (M1V), and marR (M1V). In addition, alterations/mutations were detected in the etpA, arnT, ccrB, pmrB in colistin resistant bacteria and ompK36 in carbapenem resistant bacteria. The bacterial isolates were distributed into 37 sequence types and characterized by the presence of internationally recognized high-risk clones. The results indicate that humans and animals in Nigeria may serve as reservoirs and vehicles for the global spread of the isolates. Further studies on antimicrobial resistance in African countries are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.