Allosteric communication is the basis of signaling and information transfer. Collective interactions between amino acid residues, which are spatially distributed in the three dimensional structure of a protein molecule, form the basis of allosteric network. While the construction of residue interaction graphs (RIG) is based on static crystal structures of proteins, it is important to extract information on protein dynamics to understand allostery. Therefore, quantitative analysis of RIG based on the framework of differential network (DN), is immensely helpful in identifying key amino acid residue interactions within such communication pathways. While the simultaneous availability of protein structures from two different states is essential for DN, there are additional challenges. Crystallographic artifacts like nonbiological dimeric arrangements within the crystal lattice automatically influence the construction and eventually the interpretation of RIG. Therefore, experimental validation of predictions from the analyses of RIG is naturally scarce in the literature. Herein, we study the photo sensor domain of the signaling photoreceptor transcription factor, aureochrome1, to understand light-driven signaling. We perform direct experiments to verify the predictions from RIG using the machinery of DN. However, the agreement leaves scope for improvement. We then discuss the notion of quaternary structure alignment to obtain a biologically meaningful dimer. Thence, we reconstruct the RIG and reanalyze the modified structure. Results of these reanalyses render far superior agreement with experiments. Therefore, this notion of addressing crystallographic biases provides a fresh yet general approach for reconciliation of theory and experiments. It is applicable beyond the present case to all signaling proteins in general.
Bamboos, member of the family Poaceae, represent many interesting features with respect to their fast and extended vegetative growth, unusual, yet divergent flowering time across species, and impact of sudden, large scale flowering on forest ecology. However, not many studies have been conducted at the molecular level to characterize important genes that regulate vegetative and flowering habit in bamboo. In this study, two bamboo FD genes, BtFD1 and BtFD2, which are members of the florigen activation complex (FAC) have been identified by sequence and phylogenetic analyses. Sequence comparisons identified one important amino acid, which was located in the DNA-binding basic region and was altered between BtFD1 and BtFD2 (Ala146 of BtFD1 vs. Leu100 of BtFD2). Electrophoretic mobility shift assay revealed that this alteration had resulted into ten times higher binding efficiency of BtFD1 than BtFD2 to its target ACGT motif present at the promoter of the APETALA1 gene. Expression analyses in different tissues and seasons indicated the involvement of BtFD1 in flower and vegetative development, while BtFD2 was very lowly expressed throughout all the tissues and conditions studied. Finally, a tenfold increase of the AtAP1 transcript level by p35S::BtFD1 Arabidopsis plants compared to wild type confirms a positively regulatory role of BtFD1 towards flowering. However, constitutive expression of BtFD1 had led to dwarfisms and apparent reduction in the length of flowering stalk and numbers of flowers/plant, whereas no visible phenotype was observed for BtFD2 overexpression. This signifies that timely expression of BtFD1 may be critical to perform its programmed developmental role in planta.
The photoreceptor cum transcription factors, Aureochromes, is present exclusively in marine photosynthetic algae. Co-existence of Light-Oxygen-Voltage (LOV) sensor and basic leucine zipper (bZIP) effector in aureochromes is unique -- no other photoreceptors barring aureochromes are known to possess bZIP as effector. The ability of aureochromes to participate in diverse biological activities, inverse topological arrangement make them a model protein not only to study light-dependent gene expression or transcriptional regulation but also as potential optogenetic scaffold. While detailed structural information is available for the LOV sensor, 3D structural information is absent for bZIP/bZIP+linker+LOV module. This study therefore aims for a thorough investigation of the bZIP domains from aureochromes and others, and their interaction with substrate DNA using tools from sequence/structural bioinformatics and network theory. With an in-depth comparison between 26 aureochrome subtypes and 147 plant/ophistokont bZIPs, we explore important residues at basic region and zipper - necessary for dimerization stability and DNA binding specificity. Perhaps the most notable finding is the unique histidine substitution at the DNA binding signature sequence of aureochromes, completely absent in any other bZIPs. Not only is this residue important for DNA binding, this can serve as a potential switch point in aureochrome/bZIP evolution. An all-atom network analysis on representative bZIP-DNA co-crystal structures, especially the measurement of eigenvector centrality, further adds importance to hydrophobic interactions in the zipper region to stabilize bZIP dimer and facilitate DNA binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.