An efficient cyclopenta[hi]aceanthrylene-based D–A–D type dopant-free hole transport material termed YN3 showed impressive PCEs of 18.84% and 12.05% with very good stability in organic–inorganic hybrid and all-inorganic perovskite solar cells, respectively.
The complete elimination of methylammonium (MA) cations in Sn–Pb composites can extend their light and thermal stabilities. Unfortunately, MA-free Sn–Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization, due to the coexistence of mixed intermediate phases. Here, we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs0.25FA0.75Pb0.6Sn0.4I3 and, thereby, obtaining high-performance solar cells. We introduced d-homoserine lactone hydrochloride (D-HLH) to form hydrogen bonds and strong Pb–O/Sn–O bonds with perovskite precursors, thereby weakening the incomplete complexation effect between polar aprotic solvents (e.g., DMSO) and organic (FAI) or inorganic (CsI, PbI2, and SnI2) components, and balancing their nucleation processes. This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal annealing. Besides, this D-HLH substantially inhibited the oxidation of Sn2+ species. This strategy generated a record efficiency of 21.61%, with a Voc of 0.88 V for an MA-free Sn–Pb device, and an efficiency of 23.82% for its tandem device. The unencapsulated devices displayed impressive thermal stability at 85 °C for 300 h and much improved continuous operation stability at MPP for 120 h.
While quasi‐2D perovskite is often used in inverted perovskite solar cells (PSCs) to improve the interfacial carrier transfer, the development of pure 2D perovskite with superior stability is rarely seen and the corresponding carrier‐extraction kinetics remains unclear. Here, a variety of hexatomic ring cations including piperidine, pyridine, and cyclohexane are introduced to modify the perovskite/electron transport layer interface. The Dion–Jacobson phase 2D cladding (n = 1) based on 3‐(aminomethyl) piperidinium is proved to form a coordinated energy landscape and homogeneous surface potential distribution, and effectively prolong the electron diffusion length (≈1.58 µm) and accelerate the hot‐carrier extraction rate (2.5 times that of Control at 400 K). Furthermore, the quasi‐2D treatment (n ≈ 3,4) demonstrated a slight escalation in short‐circuit current, but failed to inhibit the interdiffusion of Ag, Pb, and I under illumination. Finally, one of the state‐of‐art power conversion efficiency (PCE) for MA‐free inverted PSCs is achieved at 23.62% with increased open‐circuit voltage (≈1.15 V) and fill factor (≈82.8%). Most importantly, 89% and 93.6% of initial PCE are retained after 720 h under 85 °C heating and 1000 h under maximum power point tracking, illustrating satisfactory thermal and operational stability with pure 2D perovskite capping layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.