Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.
c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells. However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations, overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their use in clinical research.
Mitochondria are energy factories of cells and are important pivots for intracellular interactions with other organelles. They interact with the endoplasmic reticulum, peroxisomes, and nucleus through signal transduction, vesicle transport, and membrane contact sites to regulate energy metabolism, biosynthesis, immune response, and cell turnover. However, when the communication between organelles fails and the mitochondria are dysfunctional, it may induce tumorigenesis. In this review, we elaborate on how mitochondria interact with the endoplasmic reticulum, peroxisomes, and cell nuclei, as well as the relation between organelle communication and tumor development .
Wide bandgap polymer D18 with narrow photon harvesting in visible light range and small molecule N3 with near‐infrared photon harvesting are adopted for building semitransparent organic photovoltaics (OPVs). To find out the optimal D18:N3 weight ratio for semitransparent OPVs, series of opaque OPVs are built with a varied D18:N3 weight ratio. The power conversion efficiency (PCE) and fill factor can be maintained over 16% and 77% in the D18:N3 (0.7:1.6, wt/wt) based opaque OPVs, respectively. The average visible transmittance (AVT) of the corresponding blend films can be achieved over 50%, demonstrating the great potential in fabricating efficient semitransparent OPVs. The semitransparent OPVs based on D18:N3 (0.7:1.6, wt/wt) are fabricated by using 1 nm Au/(10, 15, 20 nm) Ag as cathode. The thickness of Ag layers is varied to balance the optical properties and electrical properties of semitransparent top electrode. The semitransparent OPVs with 10 nm Ag achieve the highest light utilization efficiency of 2.90% with a PCE of 12.91% and an AVT of 22.49%, which should be among the best performance of reported semitransparent OPVs. This work demonstrates that the wide bandgap polymer donor with narrow photon harvesting in visible light range has great potential in preparing efficient semitransparent OPVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.