We propose to realize ultra-wideband polarization conversion metasurfaces in microwave regime through multiple plasmon resonances. An ultra-wideband polarization conversion metasurface is designed using a double-head arrow structure and is further demonstrated both numerically and experimentally. Four plasmon resonances are generated by electric and magnetic resonances, which lead to bandwidth expansion of cross-polarization reflection. The simulated results show that the maximum conversion efficiency is nearly 100% at the four plasmon resonance frequencies and a 1:4 3 dB bandwidth can be achieved for both normally incident x- and y-polarized waves. Experimental results agree well with simulation ones.
Dimorphic plant and human mycopathogens require a switch from the usual yeast growth to filamentous growth for host tissue penetration, and the switch is controlled by multiple signaling systems other than the central developmental pathway. Unlike these fungi, dimorphic insect mycopathogens usually grow by hyphal extension, infect the host by hyphal penetration through the insect cuticle, and switch to unicellular blastospores from the penetrating hyphae only after entry into the host hemocoel, where blastospore propagation by yeast-like budding accelerates host mummification. Here, we report a dependence of the virulence-required dimorphic transition on the central pathway activators BrlA and AbaA in Beauveria bassiana. Deletion of brlA or abaA abolished both aerial conidiation and submerged blastospore formation in vitro despite no negative impact on hyphal growth in various media, including a broth mimic of insect hemolymph. The hyphae of either deletion mutant lost insect pathogenicity through normal cuticle penetration, contrasting with a high infectivity of wild-type hyphae. The mutant hyphae injected into the host hemocoel failed to form blastospores, resulting in slower lethal action. Uncovered by transcriptomic analysis, several genes involved in host adhesion and cuticle degradation were sharply repressed in both deletion mutants versus wild type. However, almost all signaling genes homologous to those acting in the dimorphic switch of other fungi were not differentially expressed at a significant level and hence unlikely to be involved in shutting down the dimorphic switch of each deletion mutant. Therefore, like aerial conidiation, the submerged dimorphic switch in vitro and in vivo is a process of asexual development governed by the two central pathway activators in B. bassiana. IMPORTANCE Dimorphic insect mycopathogens infect the host by hyphal penetration through the host cuticle and switch from the penetrating hyphae to unicellular blastospores after entry into the host hemocoel, where blastospore propagation by yeast-like budding accelerates host mummification to death. The fungal virulence-required dimorphic switch is confirmed as a process of asexual development directly regulated by BrlA and AbaA, two key activators of the central developmental pathway in an insect mycopathogen. This finding unveils a novel mechanism distinct from the control of the dimorphic switch by multiple signaling systems other than the central developmental pathway in dimorphic plant and human mycopathogens, which switch from the usual yeast growth to filamentous growth required for pathogenicity through host tissue penetration.
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
Articles you may be interested inOptical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial Appl. Phys. Lett. 105, 021110 (2014); 10.1063/1.4890623 Polarization conversions of linearly and circularly polarized lights through a plasmon-induced transparent metasurface J. Appl. Phys. 115, 243503 (2014); 10.1063/1.4885769 Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonancesIn this paper, we propose to achieve wideband linear-to-circular (LTC) polarization conversion by ultra-thin bi-layered metasurfaces. As an example, an LTC polarization conversion metasurface operating in 11.4-14.3 GHz is designed and fabricated, which is composed of two layers of metallic pattern arrays separated by a 1.5 mm-thick dielectric spacer. When linearly polarized waves impinge on the bi-layered metasurface, LTC polarization conversion transmission is greater than 90% over a wide frequency range from 11.0 GHz to 18.3 GHz. Meanwhile, the axis ratio is lower than 3 dB in 9.8-18.3 GHz. This wide-band and highly efficient LTC polarization conversion transmission is analyzed theoretically. The measured LTC polarization conversion transmissions are well consistent with the simulated results. V C 2015 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.