[1] More than 250 plumes of gas bubbles have been discovered emanating from the seabed of the West Spitsbergen continental margin, in a depth range of 150 -400 m, at and above the present upper limit of the gas hydrate stability zone (GHSZ). Some of the plumes extend upward to within 50 m of the sea surface. The gas is predominantly methane. Warming of the northward-flowing West Spitsbergen current by 1°C over the last thirty years is likely to have increased the release of methane from the seabed by reducing the extent of the GHSZ, causing the liberation of methane from decomposing hydrate. If this process becomes widespread along Arctic continental margins, tens of Teragrams of methane per year could be released into the ocean. Citation: Westbrook, G. K., et al.(2009), Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608,
North Africa produces more than half of the world's atmospheric dust load. Once entrained into the atmosphere, this dust poses a human health hazard locally. It also modifies the radiative budget regionally, and supplies nutrients that fuel primary productivity across the North Atlantic Ocean and as far afield as the Amazonian Basin. Dust accumulation in deep sea and lacustrine sediments also provides a means to study changes in palaeoclimate, particularly those associated with rainfall climate change. Systematic analysis of satellite imagery has greatly improved our understanding of the trajectories of long-range North African dust plumes, but our knowledge of the dust-producing source regions and our ability to fingerprint their contribution to these export routes is surprisingly limited. Here we report new radiogenic isotope (Sr and Nd) data for sediment samples from known dustproducing substrates (dried river and lakes beds), integrate them with published isotope data and weight them for dust source activation. We define three isotopically distinct preferential dust source areas (PSAs): a Western, a Central and an Eastern North African PSA. More data are needed, particularly from the Western PSA, but our results show a change in PSA dust source composition to more radiogenic Nd-and less radiogenic Srisotope values from west to east, in line with the overall decreasing age of the underlying bedrock. Our data reveal extreme isotopic heterogeneity within the Chadian region of the Central PSA, including an extremely distinctive geochemical fingerprint feeding the Bodélé Depression, the most active dust source on Earth. Our new analysis significantly improves the reliability by which windblown dust deposits can be geochemically fingerprinted to their distant source regions.
This version of the ar.cle has been accepted for publica.on, a6er peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any correc.ons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.