Avulsion is a key process in building alluvial fans, but it is also a formidable natural hazard. Based on laboratory experiments monitored with novel high-frequency photogrammetry, we present a new model for avulsion on widely graded gravel fans.Previous experimental studies of alluvial fans have suggested that avulsion occurs in a periodic autogenic cycle, that is thought to be mediated by the gradient of the fan and fan-channel. However, those studies measured gradients at low spatial or temporal resolutions, which capture temporally or spatially averaged topographic evolution.Here, we present high-resolution (1 mm), high-frequency (1-minute) topographic data and orthophotos from an alluvial fan experiment. Avulsions in the experiment were rapid and, in contrast to some previous experimental studies, avulsion occurrence was aperiodic. Moreover, we found little evidence of the back-filling observed at coarser temporal and spatial resolutions. Our observations suggest that avulsion is disproportionately affected by sediment accumulation in the channel, particularly around larger, less mobile grains. Such in-channel deposition can cause channel shifting that interrupts the autogenic avulsion cycle, so that avulsions are aperiodic and their timing is more difficult to predict.
Alluvial fans at tributary junctions modulate sediment flux through river networks, by buffering the mainstem channel from disturbance in the tributaries. Buffering occurs through the storage (and release) of sediment in fans. Here, we use an extensive historic dataset to characterise the ways in which fan buffering can change as sediment supply varies. In New Zealand's East Coast region, sediment supply and fluvial transport are prolific by global standards. We reconstruct how tributary‐junction fans in this region have responded to sediment generated by deforestation and extreme storms. The dynamics of five fans along the Tapuaeroa River are examined for the period 1939–2015. In response to major sediment loading, fans aggraded by up to 12 m and prograded by up to 170 m. Net sediment accumulation ranged from near zero to 1.5×106 m3. Fan size, gradient, sediment storage and buffering were influenced by both upstream and downstream controls. Key upstream (tributary) influences were sediment supply and stream power; downstream (mainstem) influences included distal confinement and, importantly, the nature of fan interaction with the mainstem, which aggraded by up to 6 m. The fans' ability to buffer the Tapuaeroa River from change in the tributaries was largely governed by this downstream interaction: as the mainstem aggraded, it increasingly curtailed fan progradation, thus limiting buffering. Previous studies of tributary‐junction fans have related fan morphometry to basin characteristics. However, we find that fan slope and area can vary considerably at decadal, annual or even monthly timescales. Consequently, we suggest that such studies could benefit by examining regional histories of disturbance. © 2019 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.