BackgroundComputer simulation models are used increasingly to support public health research and policy, but questions about their quality persist. The purpose of this article is to review the principles and methods for validation of population-based disease simulation models.MethodsWe developed a comprehensive framework for validating population-based chronic disease simulation models and used this framework in a review of published model validation guidelines. Based on the review, we formulated a set of recommendations for gathering evidence of model credibility.ResultsEvidence of model credibility derives from examining: 1) the process of model development, 2) the performance of a model, and 3) the quality of decisions based on the model. Many important issues in model validation are insufficiently addressed by current guidelines. These issues include a detailed evaluation of different data sources, graphical representation of models, computer programming, model calibration, between-model comparisons, sensitivity analysis, and predictive validity. The role of external data in model validation depends on the purpose of the model (e.g., decision analysis versus prediction). More research is needed on the methods of comparing the quality of decisions based on different models.ConclusionAs the role of simulation modeling in population health is increasing and models are becoming more complex, there is a need for further improvements in model validation methodology and common standards for evaluating model credibility.
Population health decision makers must consider complex relationships between multiple concepts measured with differential accuracy from heterogeneous data sources. Population health information systems are currently limited in their ability to integrate data and present a coherent portrait of population health. Consequentially, these systems can provide only basic support for decision makers. The Population Health Record (PopHR) is a semantic web application that automates the integration and extraction of massive amounts of heterogeneous data from multiple distributed sources (e.g., administrative data, clinical records, and survey responses) to support the measurement and monitoring of population health and health system performance for a defined population. The design of the PopHR draws on the theories of the determinants of health and evidence-based public health to harmonize and explicitly link information about a population with evidence about the epidemiology and control of chronic diseases. Organizing information in this manner and linking it explicitly to evidence is expected to improve decision making related to the planning, implementation, and evaluation of population health and health system interventions. In this paper, we describe the PopHR platform and discuss the architecture, design, key modules, and its implementation and use.
Objective: Standardized surveillance syndromes do not exist but would facilitate sharing data among surveillance systems and comparing the accuracy of existing systems. The objective of this study was to create reference syndrome definitions from a consensus of investigators who currently have or are building syndromic surveillance systems. Design: Clinical condition–syndrome pairs were catalogued for 10 surveillance systems across the United States and the representatives of these systems were brought together for a workshop to discuss consensus syndrome definitions. Results: Consensus syndrome definitions were generated for the four syndromes monitored by the majority of the 10 participating surveillance systems: Respiratory, gastrointestinal, constitutional, and influenza-like illness (ILI). An important element in coming to consensus quickly was the development of a sensitive and specific definition for respiratory and gastrointestinal syndromes. After the workshop, the definitions were refined and supplemented with keywords and regular expressions, the keywords were mapped to standard vocabularies, and a web ontology language (OWL) ontology was created. Limitations: The consensus definitions have not yet been validated through implementation. Conclusion: The consensus definitions provide an explicit description of the current state-of-the-art syndromes used in automated surveillance, which can subsequently be systematically evaluated against real data to improve the definitions. The method for creating consensus definitions could be applied to other domains that have diverse existing definitions.
Risks of cardiovascular disease are projected to decrease modestly in Canada, leading to a likely continuing decline in its incidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.