The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly translated to clinical care. Unfortunately, traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious single agents and combination therapies against SARS-CoV-2. Quantitative high-content morphological profiling was coupled with an AI-based machine learning strategy to classify features of cells for infection and stress. This assay detected multiple antiviral mechanisms of action (MOA), including inhibition of viral entry, propagation, and modulation of host cellular responses. From a library of 1,425 FDA-approved compounds and clinical candidates, we identified 16 dose-responsive compounds with antiviral effects. In particular, we discovered that lactoferrin is an effective inhibitor of SARS-CoV-2 infection with an IC50 of 308 nM and that it potentiates the efficacy of both remdesivir and hydroxychloroquine. Lactoferrin also stimulates an antiviral host cell response and retains inhibitory activity in iPSC-derived alveolar epithelial cells, a model for the primary site of infection. Given its safety profile in humans, these data suggest that lactoferrin is a readily translatable therapeutic adjunct for COVID-19. Additionally, several commonly prescribed drugs were found to exacerbate viral infection and warrant clinical investigation. We conclude that morphological profiling for drug repurposing is an effective strategy for the selection and optimization of drugs and drug combinations as viable therapeutic options for COVID-19 pandemic and other emerging infectious diseases.
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.
Hidradenitis suppurativa (HS) is a multifactorial chronic skin disease characterized by inflammation around the hair follicles commonly affecting intertriginous areas. The underlying pathogenesis of HS and its molecular mechanisms are largely understudied. Genetic studies in families have identified variants within the γ-secretase complex associated with HS; however, no definitive genotype-phenotype correlations have been made. The lack of knowledge regarding the intersection of genetics, immunology and environmental risk factors is a major obstacle to improving treatment for patients with HS. This article provides an overview of the role of race, genetics, and immunology in HS to provide insight into the multiple factors influencing the pathophysiology of HS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.