van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless band structure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 10(11) Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.
Early processing of visual information takes place in the human retina. Mimicking neurobiological structures and functionalities of the retina provides a promising pathway to achieving vision sensor with highly efficient image processing. Here, we demonstrate a prototype vision sensor that operates via the gate-tunable positive and negative photoresponses of the van der Waals (vdW) vertical heterostructures. The sensor emulates not only the neurobiological functionalities of bipolar cells and photoreceptors but also the unique connectivity between bipolar cells and photoreceptors. By tuning gate voltage for each pixel, we achieve reconfigurable vision sensor for simultaneous image sensing and processing. Furthermore, our prototype vision sensor itself can be trained to classify the input images by updating the gate voltages applied individually to each pixel in the sensor. Our work indicates that vdW vertical heterostructures offer a promising platform for the development of neural network vision sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.