The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis.
The dorsal pentagonal advancement flap is a dependable flap based on known perforators from the dorsal metacarpal arteries. The reported technique is a simple and effective technique for the correction of simple syndactyly and is especially suitable for reconstruction of two webs in multiple syndactyly simultaneously, avoiding the need for skin grafts and leaving acceptable scars on the dorsum of the hand for web reconstruction.
Abstract. Fibroblast growth factor (FGF)21 functions in the maintenance of glucose homeostasis and exerts protective effects on the liver, heat and kidneys. However, the roles of FGF21 in other tissue types are yet to be fully elucidated. The present study detected elevated expression levels of FGF21 in skin tissue. Furthermore, it was revealed that FGF21 expression in the skin was induced upon wounding. In addition, β-klotho expression was detected in the skin tissue. To examine the role of FGF21 in the wound healing process, recombinant human (h)FGF21 was expressed in a the yeast strain Pichia (P.) pastoris, a well-known system for recombinant protein production. Based on the sequence of hFGF21 and the optimal codon of P. pastoris, codon-optimized FGF21 open reading frame sequences were obtained using seven pairs of 55-59-nt primers with seven rounds of PCR. The recombinant FGF21 was purified and its function was examined in human fibroblast cells using a wound healing cell migration assay. Treatment with FGF21 promoted cell migration, which is an important step in wound healing. Furthermore, FGF21 treatment enhanced the activity of c-Jun N-terminal kinase, a key regulator in fibroblast-cell migration. In conclusion, FGF21 is induced after wounding and FGF21 expressed and purified from yeast markedly accelerates wound healing. The present study was the first to elucidate the function of FGF21 in skin tissues and provided a theoretical basis for the use of FGF21 in the treatment of skin wounds. IntroductionThe mammalian genome contains 23 fibroblast growth factors (FGFs) (1), which have essential roles in metabolism and development. FGFs have been identified to be involved in processes of embryogenesis, including gastrulation, somitogenesis, body plan formation and organogenesis, as well as in skin wound healing (2-7). Initially, 1, a member of the FGF family, was reported to be preferentially expressed in the liver (8). However, recent studies have identified that FGF21 is inducible by starvation or certain drugs, and have reported on its diverse functions in glucose homeostasis as well as hepatoand cardioprotection (9-11). FGF19, FGF21 and FGF23 belong to the FGF19 sub-family. Among them, FGF21 primarily activates FGF receptor (FGFR)1c, for which co-receptor β-klotho is required (12,13).Previous efforts to produce recombinant human FGF21 (rhFGF21) using an Escherichia (E.) coli system resulted in low expression of soluble protein, indicating that the majority of recombinant protein localized in inclusion bodies. Although the small ubiquitin-like modifier (SUMO) fusion system has been shown to facilitate the soluble expression and enhance the production of bioactive rhFGF21 (14), additional steps are required for the removal of tags from the protein expressed in vitro. At present, Pichia (P.) pastoris (yeast) is among the most successful eukaryotic protein expression systems. Compared with mammalian cells, culture of P. pastoris requires simple and cheap growth media and conditions, and P. pastoris is known to...
Random skin flaps are frequently applied in plastic and reconstructive surgery for patients suffering from soft tissue defects caused by congenital deformities, trauma and tumor resection. However, ischemia and necrosis in distal parts of random skin flaps remains a common challenge that limits the clinical application of this procedure. Recently, chemically modified mRNA (modRNA) was found to have great therapeutic potential. Here, we explored the potential of fibroblasts engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) to improve vascularization and survival of therapeutic random skin flaps. Our study showed that fibroblasts pre-treated with SDF-1α modRNA have the potential to salvage ischemic skin flaps. Through a detailed analysis, we revealed that a fibroblast SDF-1α modRNA combinatorial treatment dramatically reduced tissue necrosis and significantly promoted neovascularization in random skin flaps compared to that in the control and vehicle groups. Moreover, SDF-1α modRNA transcription in fibroblasts promoted activation of the SDF-1α/CXCR4 pathway, with concomitant inactivation of the MEK/ERK, PI3K/AKT, and JAK2/STAT3 signaling pathways, indicating a possible correlation with cell proliferation and migration. Therefore, fibroblast-mediated SDF-1α modRNA expression represents a promising strategy for random skin flap regeneration.
Epithelial-mesenchymal transition (EMT) plays a critical role in fibrotic keloid formation, which is characterized by excessive collagen and extracellular matrix synthesis and deposition. Growing evidence suggests that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) acts upstream of several major fibrosis signaling pathways; however, the role of HIPK2 in the keloid fibrogenesis remains unknown. In the current study, we investigated the roles of HIPK2 in the pathogenesis of keloids. Primary normal skin and keloid keratinocytes were cultured and pretreated with transforming growth factor (TGF)-β1. Next, keratinocytes were transfected with scrambled small interfering RNA (siRNA) and anti-HIPK2 siRNA. The TGF-β1-associated HIPK2 alterations were investigated by quantitative real-time polymerase chain reaction. Protein levels were analyzed by western blotting. The HIPK2 was markedly increased in the keloid-derived keratinocytes compared with normal skin keratinocytes. In addition, HIPK2 induced the expression of EMT markers in normal skin keratinocytes by TGF-β1-SMAD family member 3 (SMAD3). The effect of TGF-β1-related EMT markers and SMAD3 phosphorylation in response to added TGF-β1 was significantly abrogated when the cells were transfected with HIPK2 siRNA. We conclude that HIPK2 is a crucial factor in the pathogenesis of keloids, suggesting that HIPK2 might be a novel potential drug target for antikeloid therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.