Time-resolved 'dynamic' over whole-period 'static' analysis of low frequency (LF) blood-oxygen level dependent (BOLD) fluctuations provides many additional insights into the macroscale organization and dynamics of neural activity. Although there has been considerable advancement in the development of mouse resting state fMRI (rsfMRI), very little remains known about its dynamic repertoire. Here, we report for the first time the detection of a set of recurring spatiotemporal Quasi-Periodic Patterns (QPPs) in mice, which show spatial similarity with known resting state networks. Furthermore, we establish a close relationship between several of these patterns and the global signal. We acquired high temporal rsfMRI scans under conditions of low (LA) and high (HA) medetomidine-isoflurane anesthesia. We then employed the algorithm developed by Majeed et al. (2011), previously applied in rats and humans, which detects and averages recurring spatiotemporal patterns in the LF BOLD signal. One type of observed patterns in mice was highly similar to those originally observed in rats, displaying propagation from lateral to medial cortical regions, which suggestively pertain to a mouse Task-Positive like network (TPN) and Default Mode like network (DMN). Other QPPs showed more widespread or striatal involvement and were no longer detected after global signal regression (GSR). This was further supported by diminished detection of subcortical dynamics after GSR, with cortical dynamics predominating. Observed QPPs were both qualitatively and quantitatively determined to be consistent across both anesthesia conditions, with GSR producing the same outcome. Under LA, QPPs were consistently detected at both group and single subject level. Under HA, consistency and pattern occurrence rate decreased, whilst cortical contribution to the patterns diminished. These findings confirm the robustness of QPPs across species and demonstrate a new approach to study mouse LF BOLD spatiotemporal dynamics and mechanisms underlying functional connectivity. The observed impact of GSR on QPPs might help better comprehend its controversial role in conventional resting state studies. Finally, consistent detection of QPPs at single subject level under LA promises a step forward towards more reliable mouse rsfMRI and further confirms the importance of selecting an optimal anesthesia regime.
Functional connectivity is widely used to study the coordination of activity between brain regions over time. Functional connectivity in the default mode and task positive networks is particularly important for normal brain function. However, the processes that give rise to functional connectivity in the brain are not fully understood. It has been postulated that low-frequency neural activity plays a key role in establishing the functional architecture of the brain. Quasi-periodic patterns (QPPs) are a reliably observable form of low-frequency neural activity that involve the default mode and task positive networks. Here, QPPs from resting-state and working memory task-performing individuals were acquired. The spatiotemporal pattern, strength, and frequency of the QPPs between the two groups were compared and the contribution of QPPs to functional connectivity in the brain was measured. In task-performing individuals, the spatiotemporal pattern of the QPP changes, particularly in task-relevant regions, and the QPP tends to occur with greater strength and frequency. Differences in the QPPs between the two groups could partially account for the variance in functional connectivity between resting-state and task-performing individuals. The QPPs contribute strongly to connectivity in the default mode and task positive networks and to the strength of anti-correlation seen between the two networks. Many of the connections affected by QPPs are also disrupted during several neurological disorders. These findings contribute to understanding the dynamic neural processes that give rise to functional connectivity in the brain and how they may be disrupted during disease.
Resting state (rs)fMRI allows measurement of brain functional connectivity and has identified default mode (DMN) and task positive (TPN) network disruptions as promising biomarkers for Alzheimer’s disease (AD). Quasi-periodic patterns (QPPs) of neural activity describe recurring spatiotemporal patterns that display DMN with TPN anti-correlation. We reasoned that QPPs could provide new insights into AD network dysfunction and improve disease diagnosis. We therefore used rsfMRI to investigate QPPs in old TG2576 mice, a model of amyloidosis, and age-matched controls. Multiple QPPs were determined and compared across groups. Using linear regression, we removed their contribution from the functional scans and assessed how they reflected functional connectivity. Lastly, we used elastic net regression to determine if QPPs improved disease classification. We present three prominent findings: (1) Compared to controls, TG2576 mice were marked by opposing neural dynamics in which DMN areas were anti-correlated and displayed diminished anti-correlation with the TPN. (2) QPPs reflected lowered DMN functional connectivity in TG2576 mice and revealed significantly decreased DMN-TPN anti-correlations. (3) QPP-derived measures significantly improved classification compared to conventional functional connectivity measures. Altogether, our findings provide insight into the neural dynamics of aberrant network connectivity in AD and indicate that QPPs might serve as a translational diagnostic tool.
Individuals with attention-deficit/hyperactivity disorder have disrupted functional connectivity in the default mode and task positive networks. Traditional fMRI analysis techniques that focus on ‘static’ changes in functional connectivity have been successful in identifying differences between healthy controls and individuals with ADHD. However, such analyses are unable to explain the mechanisms behind the functional connectivity differences observed. Here, we study dynamic changes in functional connectivity in individuals with ADHD through investigation of quasi-periodic patterns (QPPs). QPPs are reliably recurring low-frequency spatiotemporal patterns in the brain linked to infra-slow electrical activity. They have been shown to contribute to functional connectivity observed through static analysis techniques. We find that QPPs contribute to functional connectivity specifically in regions that are disrupted in individuals with ADHD. Individuals with ADHD also show differences in the spatiotemporal pattern observed within the QPPs. This difference results in a weaker contribution of QPPs to functional connectivity in the default mode and task positive networks. We conclude that quasi-periodic patterns provide insight into the mechanisms behind functional connectivity differences seen in individuals with ADHD. This allows for a better understanding of the etiology of the disorder and development of effective treatments.
<b><i>Introduction:</i></b> Motor abnormalities have been shown to be a distinct component of schizophrenia symptomatology. However, objective and scalable methods for assessment of motor functioning in schizophrenia are lacking. Advancements in machine learning-based digital tools have allowed for automated and remote “digital phenotyping” of disease symptomatology. Here, we assess the performance of a computer vision-based assessment of motor functioning as a characteristic of schizophrenia using video data collected remotely through smartphones. <b><i>Methods:</i></b> Eighteen patients with schizophrenia and 9 healthy controls were asked to remotely participate in smartphone-based assessments daily for 14 days. Video recorded from the smartphone front-facing camera during these assessments was used to quantify the Euclidean distance of head movement between frames through a pretrained computer vision model. The ability of head movement measurements to distinguish between patients and healthy controls as well as their relationship to schizophrenia symptom severity as measured through traditional clinical scores was assessed. <b><i>Results:</i></b> The rate of head movement in participants with schizophrenia (1.48 mm/frame) and those without differed significantly (2.50 mm/frame; <i>p</i> = 0.01), and a logistic regression demonstrated that head movement was a significant predictor of schizophrenia diagnosis (<i>p</i> = 0.02). Linear regression between head movement and clinical scores of schizophrenia showed that head movement has a negative relationship with schizophrenia symptom severity (<i>p</i> = 0.04), primarily with negative symptoms of schizophrenia. <b><i>Conclusions:</i></b> Remote, smartphone-based assessments were able to capture meaningful visual behavior for computer vision-based objective measurement of head movement. The measurements of head movement acquired were able to accurately classify schizophrenia diagnosis and quantify symptom severity in patients with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.