In the present study, the potential of elemental analysis combined with statistical tools to identify honey origin was evaluated by mineral characterization of 173 honeys of 13 floral types (acacia, fir, spruce, linden, chestnut, lavender, coriander, thistle, honeydew, rosemary, sage, euphorbia and ziziphus plant species) collected from five geographical regions (Slovenia, Croatia, Bulgaria, Turkey, and Morocco). The objective of the study was to accurately and reliably differentiate the mineral composition among honey varieties. The aim was to establish traceability, to ensure product authenticity and to improve quality control measures within the honey industry. For this purpose, 18 major, minor and trace elements were quantified using microwave digestion, followed by ICP-MS measurement. Statistical evaluation of elemental concentration was undertaken using principal component analysis (PCA) to distinguish honey floral types. The research give light on the specific elements that can serve as indicators for determining the geographical and botanical source of honey. Our findings indicate that certain elements, such as Mn, K, and Ca, are primarily influenced by the type of pollen present in the honey, making them indicative of the floral source. On the other hand, levels of Na, Mg, and Fe were found to be more strongly influenced by environmental factors and can be considered as markers of geographical origin. One novel aspect of this research is the exploration of the relationship between honey minerals and honey botanical source. This was achieved through the analysis of chestnut tree samples and a subsequent comparison with the composition of chestnut honey.
Kynurenic acid (KYNA) has been attributed many beneficial properties, such as antioxidant, antiproliferative, anti-inflammatory, and anti-obesogenic, as it is believed to affect metabolism and weight gain. A rapid and simple HPLC-MS/MS method for the determination of kynurenic acid (KYNA) in honey has been developed. HPLC-MS/MS system allowed us to perform the analyzes without any special extraction or treatment of the samples. The study was carried out on different honeys: Chestnut (C), Linden (L), Acacia (A), Spruce (S), Silver Fir (SF), Forest (Fo) and Flower (F). The highest mean concentration, 682 μg/g, was determined for chestnut honey, making it one of the foods with the highest KYNA content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.