A pulse experiment model was validated in order to support future pulse experimental campaigns. All pulse experiments data was collected and are publicly available at http://trigapulse.ijs.si/. A comparison of the measured pulse physical parameters (maximal power, total released energy and full width at half maximum) and theoretical predictions (Fuchs-Hansen and the Nordheim-Fuchs models) was made.
The JSI TRIGA reactor features several in-core and ex-core irradiation facilities, each having different properties, such as neutron/gamma flux intensity, spectra and irradiation volume. A series of experiments and calculations was performed in order to characterise radiation fields in irradiation channel thus allowing users to perform irradiations in a well characterised environment. Since 2001 the reactor has been heavily used for radiation hardness studies for components used at accelerators such as the Large Hadron Collider (LHC) at CERN. Since 2010 it has been extensively used for testing of new detectors and innovative data acquisition systems and methods developed and used by the CEA. Recently, several campaigns were initiated to characterise the gamma field in the reactor and use the experimental data for improvement of the treatment of delayed gammas in Monte Carlo particle transport codes. In the future it is planned to extend the testing options by employing pulse mode operation, installation of a high energy gamma ray irradiation facility and allow irradiation of larger samples at elevated temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.