Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange (http://orange.biolab.si) to simplify image analysis by integrating deep-learning embedding, machine learning procedures, and data visualization. Orange supports the construction of data analysis workflows by assembling components for data preprocessing, visualization, and modeling. We equipped Orange with components that use pre-trained deep convolutional networks to profile images with vectors of features. These vectors are used in image clustering and classification in a framework that enables mining of image sets for both novel and experienced users. We demonstrate the utility of the tool in image analysis of progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, subcellular protein localization in yeast, and developmental morphology of social amoebae.
Motivation Single-cell RNA sequencing allows us to simultaneously profile the transcriptomes of thousands of cells and to indulge in exploring cell diversity, development and discovery of new molecular mechanisms. Analysis of scRNA data involves a combination of non-trivial steps from statistics, data visualization, bioinformatics and machine learning. Training molecular biologists in single-cell data analysis and empowering them to review and analyze their data can be challenging, both because of the complexity of the methods and the steep learning curve. Results We propose a workshop-style training in single-cell data analytics that relies on an explorative data analysis toolbox and a hands-on teaching style. The training relies on scOrange, a newly developed extension of a data mining framework that features workflow design through visual programming and interactive visualizations. Workshops with scOrange can proceed much faster than similar training methods that rely on computer programming and analysis through scripting in R or Python, allowing the trainer to cover more ground in the same time-frame. We here review the design principles of the scOrange toolbox that support such workshops and propose a syllabus for the course. We also provide examples of data analysis workflows that instructors can use during the training. Availability and implementation scOrange is an open-source software. The software, documentation and an emerging set of educational videos are available at http://singlecell.biolab.si.
Decades ago, increased volume of data made manual analysis obsolete and prompted the use of computational tools with interactive user interfaces and rich palette of data visualizations. Yet their classic, desktop-based architectures can no longer cope with the ever-growing size and complexity of data. Next-generation systems for explorative data analysis will be developed on client-server architectures, which already run concurrent software for data analytics but are not tailored to for an engaged, interactive analysis of data and models. In explorative data analysis, the key is the responsiveness of the system and prompt construction of interactive visualizations that can guide the users to uncover interesting data patterns. In this study, we review the current software architectures for distributed data analysis and propose a list of features to be included in the next generation frameworks for exploratory data analysis. The new generation of tools for explorative data analysis will need to address integrated data storage and processing, fast prototyping of data analysis pipelines supported by machine-proposed analysis workflows, pre-emptive analysis of data, interactivity, and user interfaces for intelligent data visualizations. The systems will rely on a mixture of concurrent software architectures to meet the challenge of seamless integration of explorative data interfaces at client site with management of concurrent data mining procedures on the servers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.