Electrochemotherapy is now in development for treatment of deep-seated tumors, like in bones and internal organs, such as liver. The technology is available with a newly developed electric pulse generator and long needle electrodes; however the procedures for the treatment are not standardized yet. In order to describe the treatment procedure, including treatment planning, within the ongoing clinical study, a case of successful treatment of a solitary metastasis in the liver of colorectal cancer is presented. The procedure was performed intraoperatively by inserting long needle electrodes, two in the center of the tumor and four around the tumor into the normal tissue. The insertion of electrodes proved to be feasible and was done according to the treatment plan, prepared by numerical modeling. After intravenous bolus injection of bleomycin the tumor was exposed to electric pulses. The delivery of the electric pulses did not interfere with functioning of the heart, since the pulses were synchronized with electrocardiogram in order to be delivered outside the vulnerable period of the ventricles. Also the post treatment period was uneventful without side effects. Re-operation of the treated metastasis demonstrated feasibility of the reoperation, without secondary effects of electrochemotherapy on normal tissue. Good antitumor effectiveness with complete tumor destruction was confirmed with histological analysis. The patient is disease-free 16 months after the procedure. In conclusion, treatment procedure for electrochemotherapy proved to be a feasible technological approach for treatment of liver metastasis. Due to the absence of the side effects and the first complete destruction of the treated tumor, treatment procedure for electrochemotherapy seems to be a safe method for treatment of liver metastases with good treatment effectiveness even in difficult-to-reach locations.
BackgroundElectrochemotherapy treats tumors by combining specific chemotherapeutic drugs with an intracellular target and electric pulses, which increases drug uptake into the tumor cells. Electrochemotherapy has been successfully used for treatment of easily accessible superficial tumor nodules. In this paper, we present the first case of deep-seated tumor electrochemotherapy based on numerical treatment planning.MethodsThe aim of our study was to treat a melanoma metastasis in the thigh of a patient. Treatment planning for electrode positioning and electrical pulse parameters was performed for two different electrode configurations: one with four and another with five long needle electrodes. During the procedure, the four electrode treatment plan was adopted and the patient was treated accordingly by electrochemotherapy with bleomycin. The response to treatment was clinically and radiographically evaluated. Due to a partial response of the treated tumor, the metastasis was surgically removed after 2 months and pathological analysis was performed.ResultsA partial response of the tumor to electrochemotherapy was obtained. Histologically, the metastasis showed partial necrosis due to electrochemotherapy, estimated to represent 40-50% of the tumor. Based on the data obtained, we re-evaluated the electrical treatment parameters in order to correlate the treatment plan with the clinical response. Electrode positions in the numerical model were updated according to the actual positions during treatment. We compared the maximum value of the measured electric current with the current predicted by the model and good agreement was obtained. Finally, tumor coverage with an electric field above the reversible threshold was recalculated and determined to be approximately 94%. Therefore, according to the calculations, a small volume of tumor cells remained viable after electrochemotherapy, and these were sufficient for tumor regrowth.ConclusionsIn this, the first reported clinical case, deep-seated melanoma metastasis in the thigh of the patient was treated by electrochemotherapy, according to a treatment plan obtained by numerical modeling and optimization. Although only a partial response was obtained, the presented work demonstrates that treatment of deep-seated tumor nodules by electrochemotherapy is feasible and sets the ground for numerical treatment planning-based electrochemotherapy.Trial registrationEudraCT:2008-008290-54
Electroporation-based therapies, such as electrochemotherapy and electrogene therapy, result in the disruption of blood vessel networks in vivo and cause changes in blood flow and vascular permeability. The effects of electroporation on the cytoskeleton of cultured primary endothelial cells and on endothelial monolayer permeability were investigated to elucidate possible mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were electroporated in situ and then immunofluorescence staining for filamentous actin, B-tubulin, vimentin, and VE-cadherin as well as Western blotting analysis of levels of phosphorylated myosin light chain and cytoskeletal proteins were performed. Endothelial permeability was determined by monitoring the passage of FITC-coupled dextran through endothelial monolayers. Exposure of endothelial cells to electric pulses resulted in a profound disruption of microfilament and microtubule cytoskeletal networks, loss of contractility, and loss of vascular endothelial cadherin from cell-to-cell junctions immediately after electroporation. These effects were voltage dependent and reversible because cytoskeletal structures recovered within 60 min of electroporation with up to 40 V, without any significant loss of cell viability. The cytoskeletal effects of electroporation were paralleled by a rapid increase in endothelial monolayer permeability. These results suggest that the remodeling of the endothelial cytoskeleton and changes in endothelial barrier function could contribute to the vascular disrupting actions of electroporation-based therapies and provide an insight into putative mechanisms responsible for the observed increase in permeability and cessation of blood flow in vivo.
Biogenic selenium (Se) emissions play a major role in the biogeochemical cycle of this essential micronutrient. Microalgae may be responsible for a large portion of these emissions via production of methylated Se compounds that volatilize into the atmosphere. However, the biochemical mechanisms underlying Se methylation in microalgae are poorly understood. Here, we study Se methylation by Chlamydomonas reinhardtii, a model freshwater alga, as a function of uptake and intracellular Se concentrations and present a biochemical model that quantitatively describes Se uptake and methylation. Both selenite and selenate, two major inorganic forms of Se, are readily internalized by C. reinhardtii, but selenite is accumulated around ten times more efficiently than selenate due to different membrane transporters. With either selenite or selenate as substrates, Se methylation was highly efficient (up to 89% of intracellular Se) and directly coupled to intracellular Se levels (R(2) > 0.92) over an intracellular concentration range exceeding an order of magnitude. At intracellular concentrations exceeding 10 mM, intracellular zerovalent Se was formed. The relationship between uptake, intracellular accumulation, and methylation was used by the biochemical model to successfully predict measured concentrations of methylated Se in natural waters. Therefore, biological Se methylation by microalgae could significantly contribute to environmental Se cycling.
An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway‐based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual‐based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850–1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.