Psychosocial stress contributes to the development of anxiety and depression. Recent clinical studies have reported increased inflammatory leukocytes in circulation of individuals with stress-related psychiatric disorders. Parallel to this, our work in mice shows that social stress causes release of inflammatory monocytes into circulation. In addition, social stress caused the development of prolonged anxiety that was dependent on inflammatory monocytes in the brain. Therefore, we hypothesize that chronic stress drives the production of inflammatory monocytes that are actively recruited to the brain by microglia, and these monocytes augment neuroinflammatory signaling and prolong anxiety. Here we show that repeated social defeat stress in mice activated threat appraisal centers in the brain that spatially coincided with microglial activation and endothelial facilitation of monocyte recruitment. Moreover, microglial depletion with a CSF1R antagonist prior to stress prevented the recruitment of monocytes to the brain and abrogated the development of anxiety. Cell-specific transcriptional profiling revealed that microglia selectively enhanced CCL2 expression, while monocytes expressed the pro-inflammatory cytokine IL-1β. Consistent with these profiles, the recruited inflammatory monocytes with stress adhered to IL-1R1+ neurovascular endothelial cells and this interaction was blocked by microglial depletion. Furthermore, disruption of IL-1β signaling by caspase-1KO specifically within bone marrow-derived cells revealed that monocytes promoted anxiogenesis through stimulation of neurovascular IL-1R1 by IL-1β. Collectively, the development of anxiety during stress was caused by microglial recruitment of IL-1β-producing monocytes that stimulated brain endothelial IL-1R1. Thus, monocyte IL-1β production represents a novel mechanism that underlies behavioral complications associated with stress-related psychiatric disorders.
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance.
Background: Stress is associated with an increased prevalence of anxiety and depression. Repeated social defeat (RSD) stress in mice increases the release of monocytes from the bone marrow that are recruited to the brain by microglia. These monocytes enhance inflammatory signaling and augment anxiety. Moreover, RSD promotes "stress-sensitization", in which exposure to acute stress 24 days after cessation of RSD causes anxiety recurrence. The purpose of this study was to determine if microglia were critical to stress-sensitization and exhibited increased reactivity to subsequent acute stress or immune challenge.Methods: Mice were exposed to RSD, microglia were eliminated by CSF1R-antagonism (PLX5622), allowed to repopulate, and responses to acute stress or immune challenge (lipopolysaccharide) were determined 24 days after RSD-sensitization.Results: Microglia maintained a unique mRNA signature 24 d after RSD. Moreover, elimination of RSD-sensitized microglia prevented monocyte accumulation in the brain and blocked anxiety recurrence following acute stress (24 d). When microglia were eliminated prior to RSD, repopulated and mice were subjected to acute stress, there was monocyte accumulation in the brain and anxiety in RSD-sensitized mice. These responses were unaffected by microglial elimination/repopulation. This may be related to neuronal sensitization that persisted 24 d after RSD. Following immune challenge, there was robust microglial reactivity in RSD-sensitized mice associated with prolonged sickness behavior. Here, microglial elimination/repopulation prevented the amplified immune reactivity ex vivo and in vivo in RSD-sensitized mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.