The development of tight oil has started relatively late, and the flow mechanisms and fluid movability are still research spotlights. The goal of this paper is to investigate the percolation characteristics and fluid movability of the Chang 6 tight sandstone oil layer in the Upper Triassic Yanchang Formation, Ordos Basin, China. Results show that (1) at low flow velocity, the percolation curve of flow velocity vs pressure gradient is a concave-up nonlinear curve and does not pass through the origin. It is more difficult for oil flow than water flow in cores with similar permeability due to rock wettability and fluid apparent mobility. The application of back pressure makes the nonlinear stage eliminated and the percolation character improved. (2) Two-phase flow tests reveal that oil-phase permeability decreases faster in samples with lower permeability, and the coexistent flow region of oil and water is relatively narrow. The contribution of oil recovery mainly happens at the early stage. The permeability at the isotonic point reduces with the decrease of sample permeability. (3) Flow during water flooding can be roughly divided into four stages according to the injection pressure and flow change. The injection pressure experiences stages of increasing to a peak, then decreasing, and finally becoming stable, accompanied by an increase of oil production until water breaks through. (4) The pore throats of the target reservoir mainly range from 0.001 to 10 μm, and the bound water mainly distributes in pores less than 0.2 μm. The irreducible water saturation is 30–35%, and the movable fluid saturation is 65–70%, mainly distributed in pores at 0.2–10.0 μm with a maximum of 2.0 μm. The results will supplement the existing knowledge of percolation characters and fluid movability in tight sandstone oil reservoirs.
Coalbed methane (CBM) is one of the important unconventional oil and gas resources. Since the permeability of the CBM reservoir is very low, CBM is usually developed by hydraulic fracturing technology to enhance gas productivity. In fact, most of the wells are not at the center of the columnar CBM reservoirs, which leads to different wellbore pressure responses. It is meaningful to analyze the wellbore pressure response of the off-center fractured vertical wells with asymmetrical fracture. The adsorption-desorption, fracture asymmetry are considered and a semi-analytical mathematical model is established. The pressure wellbore solution of the Laplace domain can be obtained by Laplace transformation, model coupling, and Gauss elimination. Then, the Stehfest numerical inversion is employed to obtain the pressure solution and rate distribution in the real-time domain. This semi-analytical solution is verified; the results show that the wellbore pressure includes six flow regimes, which include bilinear flow, linear flow, elliptic flow, radial flow, arc boundary reflection, and boundary dominated flow regime. The influence of fracture angle, dimensionless conductivity, and off-center distance on wellbore pressure and rate distribution are discussed in detail.
Selectively completed horizontal wells (SCHWs) can significantly reduce cost of completing wells and delay water breakthrough and prevent wellbore collapse in weak formations. Thus, SCHWs have been widely used in petroleum development industry. SCHWs can shorten the effective length of horizontal wells and thus have a vital effect on production. It is significant for SCHWs to study their rate decline and flux distribution in naturally fractured reservoirs. In this paper, by employing motion equation, state equation, and mass conservation equation, three-dimension seepage differential equation is established and corresponding analytical solution is obtained by Laplace transform and finite cosine Fourier transform. According to the relationship of constant production and wellbore pressure in Laplace domain, dimensionless rate solution is gotten under constant wellbore pressure in Laplace domain. Dimensionless pressure and pressure derivate curves and rate decline curves are drawn in log-log plot and seven flow regimes are identified by Stehfest numerical inversion. We compared the simplified results of this paper with the results calculated by Saphir for horizontal wells in naturally fractured reservoirs. The results showed excellent agreement. Some parameters, such as outer boundary radius, storativity ratio, cross-flow coefficient, number and length of open segments, can obviously affect the rate integral and rate integral derivative log-log curves of the SCHWs. The proposed model in this paper can help better understand the flow regime characteristics of the SCHWs and provide more accurate rate decline analysis of the SCHWs data to evaluate formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.