Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Treatment options for adult patients with glioma has remained largely unchanged over the past three decades. Targeted inhibitors and immunotherapies have improved outcomes for many cancer types but their relevance in glioma is unclear. The inevitability of glioma disease recurrence demands an understanding of mechanisms driving therapy resistance. The Glioma Longitudinal Analysis (GLASS) Consortium was initiated to establish a definitive portrait of the recurrence process and to discover vulnerabilities that render the tumor sensitive to therapeutic intervention. GLASS is a community-driven effort that seeks to overcome the logistical challenges in constructing adequately powered longitudinal genomic glioma datasets by pooling data from patients treated at institutions worldwide. Currently, the GLASS Data Resource comprises DNA sequencing data (exome and/or whole-genome) from 288 patients of whom high-quality data in at least two time points are present from 222 patients (n = 134 IDHwt, n = 63 IDHmutant-noncodel, n = 25 IDHmutant-codel). We inferred longitudinal mutation, copy number, clonal frequency, and neoantigen profiles and demonstrated that driver genes found at initial disease persisted into recurrence. Treatment with alkylating-agents resulted in a hypermutator phenotype at different rates across glioma subtypes, most frequently among IDHmutant-noncodels, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent IDHmutant-noncodel gliomas and further converged with acquired cell cycle pathway alterations and poor outcomes. We showed that the clonal architecture of each tumor remains largely intact over time and that genetic drift was associated with increased survival. Finally, we found that neoantigens were exposed to stable selective pressures throughout a tumor’s progression. Our results collectively suggest that the strongest selective pressures occur early during glioma development and that current therapies shape this evolution in a largely stochastic manner. The GLASS Data Resource provides a genomic reference to study the patterns of glioma evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.