In this work, the hot deformation characteristics of a near-α Ti-Al-2SnZr-2Mo alloy (Ti6242 alloy) with a Fine-Grained (FG) microstructure (dα = 2.86 μm) were investigated at two levels of temperature, T = 730 ∘C and T = 840 ∘C. The initial microstructure consists of equiaxed nodules of the α phase as well as some α lamellae sparsely distributed and separated by thin layers of the BCC β phase. For both temperatures, three strain rates (10−4,10−3,10−2s−1) were analysed during loading. Moreover, the microstructural evolution (α size and morphology) was also evaluated by conducting interrupted tensile tests. The different tensile testing conditions greatly influence the stress-strain response of the material as well as the microstructure evolution. Indeed, various phenomena can take place such as elongation of the grain structure, globularization, dynamic recrystallization and grain growth of the equiaxed areas depending on the temperature, the strain rate and the strain level. The FG Ti6242 alloy exhibits interesting superplastic ductility at T = 840 ∘C. At this temperature either a very gradual flow softening (at higher strain rate) or flow hardening (at lower strain rate) can be observed and are related respectively to one or more of the following mechanisms: lamellae globularization, DRX and grain growth. At the intermediate strain rate, both mechanisms, strain hardening and softening, coexist. At T = 730 ∘C, the onset of the α lamellae globularization was only promoted at low strain rate. A mechanical behavior model was developed in the temperature range of 730–840 ∘C, which was able to take into account all the observed phenomena: viscosity, softened behavior and strain hardening. Constitutive equations were calibrated from the stress-strain responses and microstructural observations, and the computed results were in good agreement with the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.