MicroRNAs (miRNAs) are small molecule RNAs widely involved in responses to plant abiotic stresses. We performed small RNA sequencing of cotton anthers at four developmental stages under normal and high temperature (NT and HT, respectively) conditions to investigate the stress response characteristics of miRNA to HT. A total of 77 miRNAs, including 33 known miRNAs and 44 novel miRNAs, were identified, and 41 and 28 miRNAs were differentially expressed under NT and HT stress conditions, respectively. The sporogenous cell proliferation (SCP), meiotic phase (MP), microspore release period (MRP), and pollen maturity (PM) stages had 10 (including 12 miRNAs), four (including six miRNAs), four (including five miRNAs), and seven (including 11 miRNAs) HT stress-responsive miRNA families, respectively, which were identified after removing the changes in genotype-specific miRNAs under NT condition. Seven miRNA families (miR2949, miR167, and miR160 at the SCP stage; miR156 and miR172 at the MP stage; miR156 at the MRP stage; and miR393 and miR3476 at the PM stage), which had expression abundance of more than 10% of the total expression abundance, served as the main regulators responding to HT stress with positive or negative regulation patterns. These miRNAs orchestrated the expression of the corresponding target genes and led to different responses in the HT-tolerant and the HT-sensitive lines. The results revealed that the HT stress response of miRNAs in cotton anthers were stage-specific and differed with the development of anthers. Our study may enhance the understanding of the response of miRNAs to HT stress in cotton anthers and may clarify the mechanism of plant tolerance to HT stress.
Background
The circadian clock not only participates in regulating various stages of plant growth, development and metabolism, but confers plant environmental adaptability to stress such as drought. Pseudo-Response Regulators (PRRs) are important component of the central oscillator (the core of circadian clock) and play a significant role in plant photoperiod pathway. However, no systematical study about this gene family has been performed in cotton.
Methods
PRR genes were identified in diploid and tetraploid cotton using bioinformatics methods to investigate their homology, duplication and evolution relationship. Differential gene expression, KEGG enrichment analysis and qRT-PCR were conducted to analyze PRR gene expression patterns under diurnal changes and their response to drought stress.
Results
A total of 44 PRR family members were identified in four Gossypium species, with 16 in G. hirsutum, 10 in G. raimondii, and nine in G. barbadense as well as in G. arboreum. Phylogenetic analysis indicated that PRR proteins were divided into five subfamilies and whole genome duplication or segmental duplication contributed to the expansion of Gossypium PRR gene family. Gene structure analysis revealed that members in the same clade are similar, and multiple cis-elements related to light and drought stress response were enriched in the promoters of GhPRR genes. qRT-PCR results showed that GhPRR genes transcripts presented four expression peaks (6 h, 9 h, 12 h, 15 h) during 24 h and form obvious rhythmic expression trend. Transcriptome data with PEG treatment, along with qRT-PCR verification suggested that members of clade III (GhPRR5a, b, d) and clade V (GhPRR3a and GhPRR3c) may be involved in drought response. This study provides an insight into understanding the function of PRR genes in circadian rhythm and in response to drought stress in cotton.
ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton (Gossypium spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within G. arboretum, G. raimondii, G. hirsutum and G. barbadense, separately. The above ABCGs could be divided into four groups (Ia, Ib, Ic, II). Some ABCG genes such as GhABCG15, whose homologous gene transports cuticular lipid in Arabidopsis, was preferentially expressed in the development of fiber. A weighted gene co-expression network analysis (WGCNA) demonstrated that GhABCG expression was significantly associated with the amount of 16-Hydroxypalmitate (a main component of cutin precursor) in cotton fibers. Further, silencing of GhABCG15 by virus-induced gene silencing (VIGS) in cotton generated brightened and crinkled leaves as well as reduced thickness of cuticle and increased permeability. Chemical composition analysis showed the cutin content in GhABCG15-silenced leaves had decreased while the wax content had increased. Our results provide an insight for better understanding of the role of the Gossypium ABCG family and revealed the essential role of GhABCGs in cotton cutin formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.