We establish stability and characteristics of two-dimensional (2D) vortex ring-shaped quantum droplets (QDs) formed by binary Bose-Einstein condensates (BECs). The system is modeled by the Gross-Pitaevskii (GP) equation with the cubic term multiplied by a logarithmic factor (as produced by the Lee-Huang-Yang correction to the mean-field theory) and a potential which is a periodic function of the radial coordinate. Narrow vortex rings with high values of the topological charge, trapped in particular circular troughs of the radial potential, are produced. These results suggest an experimentally relevant method for the creation of vortical QDs (thus far, only zero-vorticity ones have been reported). The 2D GP equation for the narrow rings is approximately reduced to the 1D form, which makes it possible to study the modulational stability of the rings against azimuthal perturbations. Full stability areas are delineated for these modes. The trapping capacity of the circular troughs is identified for the vortex rings with different winding numbers (WNs). Stable compound states in the form of mutually nested concentric multiple rings are constructed too, including ones with opposite signs of the WNs. Other robust compound states combine a modulationally stable narrow ring in one circular potential trough and an azimuthal soliton performing orbital motion in an adjacent one. The results may be used to design a device employing coexisting ring-shaped modes with different WNs for data storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.