Image stitching for two images without a global transformation between them is notoriously difficult. In this paper, noticing the importance of planar structure under perspective geometry, we propose a new image stitching method which stitches images by allowing for the alignment of a set of matched dominant planar regions. Clearly different from previous methods resorting to plane segmentation, the key to our approach is to utilize rich semantic information directly from RGB images to extract planar image regions with a deep Convolutional Neural Network (CNN). We specifically design a new module to make fully use of existing semantic segmentation networks to accommodate planar segmentation. To train the network, a dataset for planar region segmentation is contributed. With the planar region knowledge, a set of local transformations can be obtained by constraining matched regions, enabling more precise alignment in the overlapping area. We also use planar knowledge to estimate a transformation field over the whole image. The final mosaic is obtained by a mesh-based optimization framework which maintains high alignment accuracy and relaxes similarity transformation at the same time. Extensive experiments with quantitative comparisons show that our method can deal with different situations and outperforms the state-of-the-arts on challenging scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.