The niche surrounding stem cells regulate their fate during homeostasis and after injury or infection. The 3D organoid assay has been widely used to study stem cells behavior based on its capacity to evaluate self-renewal, differentiation and the effect of various medium supplements, drugs and co-culture with supportive cells. We established an assay to study both lung and trachea stem cells in vitro. We characterized their proliferation and differentiation spectrum at baseline then evaluated the effect of co-culturing with fibroblasts and endothelial cells and/or treating with several biologically relevant substances as possible contributors to their niche. We found that lung epithelial (but not tracheal basal) stem cells require co-culture with stromal cells to undergo clonal proliferation and differentiation. Fibroblasts were more efficient than endothelial cells in offering this support and the pattern of support varied based on the tissue origin of the stromal cells. Treating distal lung epithelial or basal stem cells with FGF2, FGF9, FGF10, LIF as well as ALK5 and ROCK inhibitors increased their colony formation efficiency and resulted in variable effects on colonies number, size and differentiation spectrum. This model and findings pave the way for better understanding of lung stem cell niche components and factors that can manipulate lung stem cell behavior.
Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFa, one of the EGFR ligands, was significantly increased and knockdown of TGFa restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling. Mol Cancer Ther; 15(1); 162-71. Ó2015 AACR.
Fibroblast growth factor (FGF) 9 is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumors. We show that prolonged FGF9 overexpression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumor cells harbored tumor-propagating cells that were able to form secondary tumors in recipient mice regardless of FGF9 expression. However, the highest degree of tumor propagation was observed when unfractionated tumor cells were coadministered with autologous, tumor-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9/FGF receptor (FGFR) 3 signaling axis, maintenance and propagation of the tumor was independent of this signaling. Activation of an alternative FGF/FGFR and the interaction with tumor stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF/FGFR signaling in the initiation, growth, and propagation of lung cancer. Our findings suggest that analyzing the expressions of FGFs/FGFRs in human lung cancer will be a useful tool for guiding customized therapy.
Background Abscopal effect is the out-of-field response to localized irradiation therapy that results in systemic antitumorigenic effects such as the regression of a tumor distant from the target site. Case presentation A 76-year-old woman was diagnosed with pulmonary adenocarcinoma (cT1bN0M0 stage IA), and right upper lobectomy was performed in November 2015. The pathological stage was pT1bN2M0 stage IIIA. Genomic analysis revealed an EGFR mutation. Immunohistochemical analysis revealed a programmed death-ligand 1 tumor proportion score of < 1%. The patient was under watchful observation without adjuvant chemotherapy. Multiple mediastinal and right hilar lymph node metastases were found in February 2018. Radiation therapy at a total dose of 60.0 Gy distributed in 30 fractions was performed over a period of 6 weeks. A computed tomography (CT) scan performed 6 weeks after irradiation therapy showed a reduction in lymph node metastases. However, left hilar and right supraclavicular lymph node metastases and multiple pulmonary metastases were newly observed outside of the irradiation field. A CT scan performed 6 weeks later showed a dramatic complete disappearance of the previously observed pulmonary metastases. No chemotherapy was administered during the period. Conclusion This was a case of abscopal effect: irradiation of the mediastinum resulted in the disappearance of multiple pulmonary metastases in both lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.