A key problem in systems neuroscience is to understand how neural populations integrate relevant sensory inputs during decision-making. Here, we address this problem by training a structured recurrent neural network to reproduce both psychophysical behavior and neural responses recorded from monkey prefrontal cortex during a context-dependent per-ceptual decision-making task. Our approach yields a one-to-one mapping of model neurons to recorded neurons, and explicitly incorporates sensory noise governing the animal’s performance as a function of stimulus strength. We then analyze the dynamics of the resulting model in order to understand how the network computes context-dependent decisions. We find that network dynamics preserve both relevant and irrelevant stimulus information, and exhibit a grid of fixed points for different stimulus conditions as opposed to a one-dimensional line attractor. Our work provides new insights into context-dependent decision-making and offers a powerful framework for linking cognitive function with neural activity within an artificial model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.