Background: Preterm birth (PTB) represents the leading cause of neonatal death. Large-scale genetic studies are necessary to determine genetic influences on PTB risk, but prospective cohort studies are expensive and time-consuming. We investigated the feasibility of retrospective recruitment of post-partum women for efficient collection of genetic samples, with self-collected saliva for DNA extraction from themselves and their babies, alongside self-recollection of pregnancy and birth details to phenotype PTB. Methods: 708 women who had participated in the OPPTIMUM trial (a randomised trial of progesterone pessaries to prevent PTB [ISRCTN14568373]) and consented to further contact were invited to provide self-collected saliva from themselves and their babies. DNA was extracted from Oragene OG-500 (adults) and OG-575 (babies) saliva kits and the yield measured by Qubit. Samples were analysed using a panel of Taqman single nucleotide polymorphism (SNP) assays. A questionnaire designed to meet the minimum data set required for phenotyping PTB was included. Questionnaire responses were transcribed and analysed for concordance with prospective trial data. Results: Recruitment rate was 162/708 (23%) for self-collected saliva samples and 157/708 (22%) for questionnaire responses. 161 samples from the mother provided DNA with median yield 59.0µg (0.4-148.9µg). 156 samples were successfully genotyped (96.9%). 136 baby samples had a median yield 11.5µg (0.1-102.7µg); two samples failed DNA extraction. 131 baby samples (96.3%) were successfully genotyped. Concordance between self-recalled birth details and prospective birth details ranged from 55 – 99%, median 86%. The highest rates of concordance were found for mode of birth (154/156 [99%]), smoking status (151/157 [96%]) and ethnicity (149/156 [96%]). Conclusion: This feasibility study demonstrates that self-collected DNA samples from mothers and babies were sufficient for genetic analysis but yields were variable. Self-recollection of pregnancy and birth details was inadequate for accurately phenotyping PTB, highlighting the need for alternative strategies for investigating genetic links with PTB.
Background: Preterm birth (PTB) represents the leading cause of neonatal death. Large-scale genetic studies are necessary to determine genetic influences on PTB risk, but prospective cohort studies are expensive and time-consuming. We investigated the feasibility of retrospective recruitment of post-partum women for efficient collection of genetic samples, with self-collected saliva for DNA extraction from themselves and their babies, alongside self-recollection of pregnancy and birth details to phenotype PTB. Methods: 708 women who had participated in the OPPTIMUM trial (a randomised trial of progesterone pessaries to prevent PTB [ISRCTN14568373]) and consented to further contact were invited to provide self-collected saliva from themselves and their babies. DNA was extracted from Oragene OG-500 (adults) and OG-575 (babies) saliva kits and the yield measured by Qubit. Samples were analysed using a panel of Taqman single nucleotide polymorphism (SNP) assays. A questionnaire designed to meet the minimum data set required for phenotyping PTB was included. Questionnaire responses were transcribed and analysed for concordance with prospective trial data using Cohen’s kappa (k). Results: Recruitment rate was 162/708 (23%) for self-collected saliva samples and 157/708 (22%) for questionnaire responses. 161 samples from the mother provided DNA with median yield 59.0µg (0.4-148.9µg). 156 samples were successfully genotyped (96.9%). 136 baby samples had a median yield 11.5µg (0.1-102.7µg); two samples failed DNA extraction. 131 baby samples (96.3%) were successfully genotyped. Concordance between self-recalled birth details and prospective birth details was excellent (k>0.75) in 4 out of 10 key fields for phenotyping PTB (mode of delivery, labour onset, ethnicity and maternal age at birth). Conclusion: This feasibility study demonstrates that self-collected DNA samples from mothers and babies were sufficient for genetic analysis but yields were variable. Self-recollection of pregnancy and birth details was inadequate for accurately phenotyping PTB, highlighting the need for alternative strategies for investigating genetic links with PTB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.