Action choices are influenced by recent past and predicted future action states. Here, we demonstrate that recent hand-choice history affects both current hand choices and response times to initiate actions. Participants reach to contact visible targets using one hand. Hand choice is biased in favour of which hand was used recently, in particular, when the biomechanical costs of responding with either hand are similar, and repeated choices lead to reduced response times. These effects are also found to positively correlate. Participants who show strong effects of recent history on hand choice also tend to show strong effects of recent history on response times. The data are consistent with a computational efficiency interpretation whereby repeated action choices confer computational gains in the efficiency of underpinning processes. We discuss our results within the framework of this model, and with respect to balancing predicted gains and losses, and speculate about the possible underlying mechanisms in neural terms.
The current study investigates a new neurobiological model of human hand choice: The Posterior Parietal Interhemispheric Competition (PPIC) model. The model specifies that neural populations in bilateral posterior intraparietal and superior parietal cortex (pIP-SPC) encode actions in hand-specific terms, and compete for selection across and within hemispheres. Actions with both hands are encoded bilaterally, but the contralateral hand is overrepresented. We use a novel fMRI paradigm to test the PPIC model. Participants reach to visible targets while in the scanner, and conditions involving free choice of which hand to use (Choice) are compared with when hand-use is instructed. Consistent with the PPIC model, bilateral pIP-SPC is preferentially responsive for the Choice condition, and for actions made with the contralateral hand. In the right pIP-SPC, these effects include anterior intraparietal and superior parieto-occipital cortex. Left dorsal premotor cortex, and an area in the right lateral occipitotemporal cortex show the same response pattern, while the left inferior parietal lobule is preferentially responsive for the Choice condition and when using the ipsilateral hand. Behaviourally, hand choice is biased by target location-for targets near the left/right edges of the display, the hand in ipsilateral hemispace is favoured. Moreover, consistent with a competitive process, response times are prolonged for choices to more ambiguous targets, where hand choice is relatively unbiased, and fMRI responses in bilateral pIP-SPC parallel this pattern. Our data provide support for the PPIC model, and reveal a selective network of brain areas involved in free hand choice, including bilateral posterior parietal cortex, left-lateralized inferior parietal and dorsal premotor cortices, and the right lateral occipitotemporal cortex.
The current study used a high frequency TMS protocol known as continuous theta burst stimulation (cTBS) to test a model of hand choice that relies on competing interactions between the hemispheres of the posterior parietal cortex. Based on the assumption that cTBS reduces cortical excitability, the model predicts a significant decrease in the likelihood of selecting the hand contralateral to stimulation. An established behavioural paradigm was used to estimate hand choice in each individual, and these measures were compared across three stimulation conditions: cTBS to the left posterior parietal cortex, cTBS to the right posterior parietal cortex, or sham cTBS. Our results provide no supporting evidence for the interhemispheric competition model. We find no effects of cTBS on hand choice, independent of whether the left or right posterior parietal cortex was stimulated. Our results are nonetheless of value as a point of comparison against prior brain stimulation findings that, in contrast, provide evidence for a causal role for the posterior parietal cortex in hand choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.