The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
Opinions on the hypothesis that ancient genome duplications contributed to the vertebrate genome range from strong skepticism to strong credence. Previous studies concentrated on small numbers of gene families or chromosomal regions that might not have been representative of the whole genome, or used subjective methods to identify paralogous genes and regions. Here we report a systematic and objective analysis of the draft human genome sequence to identify paralogous chromosomal regions (paralogons) formed during chordate evolution and to estimate the ages of duplicate genes. We found that the human genome contains many more paralogons than would be expected by chance. Molecular clock analysis of all protein families in humans that have orthologs in the fly and nematode indicated that a burst of gene duplication activity took place in the period 350 650 Myr ago and that many of the duplicate genes formed at this time are located within paralogons. Our results support the contention that many of the gene families in vertebrates were formed or expanded by large-scale DNA duplications in an early chordate. Considering the incompleteness of the sequence data and the antiquity of the event, the results are compatible with at least one round of polyploidy.
About 30% of protein-coding genes in the human genome are related through two whole genome duplication (WGD) events. Although WGD is often credited with great evolutionary importance, the processes governing the retention of these genes and their biological significance remain unclear. One increasingly popular hypothesis is that dosage balance constraints are a major determinant of duplicate gene retention. We test this hypothesis and show that WGD-duplicated genes (ohnologs) have rarely experienced subsequent small-scale duplication (SSD) and are also refractory to copy number variation (CNV) in human populations and are thus likely to be sensitive to relative quantities (i.e., they are dosage-balanced). By contrast, genes that have experienced SSD in the vertebrate lineage are more likely to also display CNV. This supports the hypothesis of biased retention of dosage-balanced genes after WGD. We also show that ohnologs have a strong association with human disease. In particular, Down Syndrome (DS) caused by trisomy 21 is widely assumed to be caused by dosage effects, and 75% of previously reported candidate genes for this syndrome are ohnologs that experienced no other copy number changes. We propose the remaining dosage-balanced ohnologs on chromosome 21 as candidate DS genes. These observations clearly show a persistent resistance to dose changes in genes duplicated by WGD. Dosage balance constraints simultaneously explain duplicate gene retention and essentiality after WGD. E arly in the vertebrate lineage the genome of our simple ancestor experienced radical upheaval from two rounds of whole genome duplication (WGD) and the subsequent chromosomal rearrangement and loss of many of the duplicate copies ("ohnologs") (1-3). Although only about 20-30% of the protein-coding genes in the human genome can be traced back to these events (ref. 3 and this study), the two tetraploid episodes in vertebrate history have frequently been credited with creating the conditions for the evolution of vertebrate complexity. Understanding the patterns of ohnolog retention is crucial to develop a unified model for the evolutionary impact of WGD and many groups have uncovered significant trends such as enrichment for developmental genes (4-6) and protein complex membership (7).Recently it was shown that mammalian ohnologs are more essential (i.e., knockout of one copy is more likely to lead to sterility or inviability) than paralogs generated by small-scale duplication (SSD) and are equally as essential as singleton genes (7). A prevalence of dosage-balanced genes among ohnologs was proposed to explain this contradiction of the theoretical, expected backup role of duplicated genes, which should buffer against such effects. Dosage balance may exist between two or more genes whose products interact or participate in the same pathway or process (8-10). According to the dosage balance hypothesis, changes in the relative dosage of gene product, such as would occur through duplication of some but not all of the balanced gene set, should...
The origin of new genes is extremely important to evolutionary innovation. Most new genes arise from existing genes through duplication or recombination. The origin of new genes from noncoding DNA is extremely rare, and very few eukaryotic examples are known. We present evidence for the de novo origin of at least three human protein-coding genes since the divergence with chimp. Each of these genes has no protein-coding homologs in any other genome, but is supported by evidence from expression and, importantly, proteomics data. The absence of these genes in chimp and macaque cannot be explained by sequencing gaps or annotation error. High-quality sequence data indicate that these loci are noncoding DNA in other primates. Furthermore, chimp, gorilla, gibbon, and macaque share the same disabling sequence difference, supporting the inference that the ancestral sequence was noncoding over the alternative possibility of parallel gene inactivation in multiple primate lineages. The genes are not well characterized, but interestingly, one of them was first identified as an upregulated gene in chronic lymphocytic leukemia. This is the first evidence for entirely novel human-specific protein-coding genes originating from ancestrally noncoding sequences. We estimate that 0.075% of human genes may have originated through this mechanism leading to a total expectation of 18 such cases in a genome of 24,000 protein-coding genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.