Carbon has long been applied as an electrochemical sensing interface owing to its unique electrochemical properties. Moreover, recent advances in material design and synthesis, particularly nanomaterials, has produced robust electrochemical sensing systems that display superior analytical performance. Carbon nanotubes (CNTs) are one of the most extensively studied nanostructures because of their unique properties. In terms of electroanalysis, the ability of CNTs to augment the electrochemical reactivity of important biomolecules and promote electron transfer reactions of proteins is of particular interest. The remarkable sensitivity of CNTs to changes in surface conductivity due to the presence of adsorbates permits their application as highly sensitive nanoscale sensors. CNT-modified electrodes have also demonstrated their utility as anchors for biomolecules such as nucleic acids, and their ability to diminish surface fouling effects. Consequently, CNTs are highly attractive to researchers as a basis for many electrochemical sensors. Similarly, synthetic diamonds electrochemical properties, such as superior chemical inertness and biocompatibility, make it desirable both for (bio) chemical sensing and as the electrochemical interface for biological systems. This is highlighted by the recent development of multiple electrochemical diamond-based biosensors and bio interfaces.
Rapid and accurate analysis of food produce is essential to screen for species that may cause significant health risks like bacteria, pesticides and other toxins. Considerable developments in analytical techniques and instrumentation, for example chromatography, have enabled the analyses and quantitation of these contaminants. However, these traditional technologies are constrained by high cost, delayed analysis times, expensive and laborious sample preparation stages and the need for highly-trained personnel. Therefore, emerging, alternative technologies, for example biosensors may provide viable alternatives. Rapid advances in electrochemical biosensors have enabled significant gains in quantitative detection and screening and show incredible potential as a means of countering such limitations. Apart from demonstrating high specificity towards the analyte, these biosensors also address the challenge of the multifactorial food industry of providing high analytical accuracy amidst complex food matrices, while also overcoming differing densities, pH and temperatures. This (public and Industry) demand for faster, reliable and cost-efficient analysis of food samples, has driven investment into biosensor design. Here, we discuss some of the recent work in this area and critique the role and contributions biosensors play in the food industry. We also appraise the challenges we believe biosensors need to overcome to become the industry standard.
A rapid tool to discriminate rhino horn and ivory samples from different mammalian species based on the combination of near-infrared reflection (NIR) spectroscopy and chemometrics was evaluated. In this study, samples from the Australian Museum mammalogy collection were scanned between 950 nm and 1650 nm using a handheld spectrophotometer and analyzed using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). An overall correct classification rate of 73.5% was obtained for the classification of all samples. This study demonstrates the potential of NIR spectroscopy coupled with chemometrics as a means of a rapid, nondestructive classification technique of horn and ivory samples sourced from a museum. Near-infrared spectroscopy can be used as an alternative or complementary method in the detection of horn and ivory assisting in the combat of illegal trade and aiding the preservation of at-risk species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.