Molecular communication (MC) aims to use signaling molecules as information carriers to achieve communication between biological entities. However, MC systems severely suffer from inter symbol interference (ISI) and external noise, making it virtually difficult t o obtain accurate mathematical models. Specifically, the mathematically intractable channel state information (CSI) of MC motivates the deep learning (DL) based signal detection methods. In this paper, a modified t emporal convolutional network (TCN) is proposed for signal detection for a special MC communication system which uses magnetotactic bacteria (MTB) as information carriers. Results show that the TCN-based detector demonstrates the best overall performance. In particular, it achieves better bit error rate (BER) performance than sub-optimal maximum a posteriori (MAP) and deep neural network (DNN) based detectors. However, it behaves similar with the bidirectional long short term memory (BiLSTM) based detector that have been previously proposed and worse than the optimal MAP detector. When both BER performance and computational complexity are taken into account, the proposed TCN-based detector outperforms BiLSTM-based detectors. Furthermore, in terms of robustness evaluation, the proposed TCN-based detector outperforms all other DL-based detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.