Pressure Reducing Valves (PRV) have been widely used as a device to control pressure at nodes in water distribution networks and thus reduce leakages. However, an energy dissipation takes place during PRV operation. Thus, micro-hydropower turbines and, more precisely, Pump As Turbines (PAT) could be used as both leakage control and energy generating devices, thus contributing to a more sustainable water supply network. Studies providing clear guidelines for the determination of the most cost-effective device (PRV or PAT) analysing a wide database and considering all the costs involved, the water saving and the eventual power generation, have not been carried out to date. A model to determine the most cost-effective device has been developed, taking into account the Net Present Value (NPV). The model has been applied to two case studies: A database with 156 PRVs sites located in the UK; and a rural water supply network in Ireland with three PRVs. The application of the model showed that although the investment cost associated to the PRV installation is lower in the majority of cases, the NPV over the lifespan of the PAT is higher than the NPV associated with the PRV operation. Furthermore, the ratio between the NPV and the water saved over the lifespan of the PAT/PRV also offered higher values (from 6% to 29%) for the PAT installation, making PATs a more cost-effective and more sustainable means of pressure control in water distribution networks. Finally, the development of less expensive turbines and/or PATs adapted to work under different flow-head conditions will tip the balance toward the installation of these devices even further.
New challenges in water systems include different approaches from analysis of failures and risk assessment to system efficiency improvements and new innovative designs. In water distribution networks (WDNs), the risk function is a measure of its vulnerability level and security loss. Analyses of transient flows which are associated with the most dangerous operating conditions, are compulsory to grant the system liability both in water quantity, quality, and management. Specific equipment, such as air valves are used in pressurized water pipes to manage the air inside associated with the filling process, that can also act as a control mechanism, where the major limitation is its reliability. Advanced tools are developed specifically to smart water grids implementation and operation. The water system efficiency and water-energy nexus, through the implementation of suitable, pressure control and energy recovery devices, and pumped-storage hydropower solutions, provide guidelines for the determination of the most technical cost-effective result. Integrated analysis of water and energy allows more reliable, flexible, and sustainable eco-design projects, reaching better resilience systems through new concepts. The development of model simulations, based on hydraulic simulators and computational fluid dynamics (CFD), conjugating with field or experimental tests, supported by advanced smart equipment, allow the control, identification, and anticipation of complex events necessary to maintain the water system security and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.