Smart mobility is becoming an alternative technology of transportation development for today and the future. Thailand has applied the intelligent transport system (ITS) to improve traffic and transport services. The success of the project is generally dependent on collaboration between private, public, and governmental agencies in policymaking and planning, coupled with an inclusive agreement and technological knowledge in the field. This study argues that Thailand’s automatic transportation has been successful because of cooperative-ITS (C-ITS). This study explores the evidence-based cases of ITS development from six areas, Singapore, South Korea, Japan, China, the European Union, and the United States of America, to explain how the C-ITS conditions support the success of ITS. The study uses the SWOT (Strength, Weakness, Opportunity, Threat) and TOWS (Threat, Opportunity, Weakness, Strength) analysis matrix to identify influential factors from the six-area cases and compare them to Thailand. The authors identified seven components that relate to the success of Thailand’s C-ITS. These include: (1) Pragmatic policy for pilot project implementation; (2) close cooperation among stakeholders; (3) working criteria for C-ITS development; (4) architecture of standard and framework; (5) share of lessons learned about current technology; (6) capability of C-ITS deployment; and (7) a clear statement of data exchange and sharing. These findings represent both the threat and opportunity for traffic and transport improvement in Thailand through the C-ITS approach.
Public transportation has been encouraged as a significant solution to overcome traffic congestion. An advanced technology, known as advanced public transport system (APTS), was introduced to enhance the effectiveness of public transportation. To support appropriate decisions on selecting application development, significant indicators representing the impacts of the proposed projects are highlighted. This study aims to determine the desirable indicators of developing APTS to achieve smart mobility using the fuzzy Analytical Hierarchy Process (fuzzy AHP) method and allocating weights to each indicator. The perception of a group of intelligent transport system (ITS) experts from three sectors in the Bangkok Metropolitan Regions (BMR) was examined to conduct a fuzzy AHP pairwise comparison. The ranking of 21 indicators categorized within six dimensions in accordance with the specific ITS master plan relating to APTS development is presented. The result presented that the safety dimension obtained the highest rank, and the three most important weight indicators are traffic accident reduction relating to public transportation, smart public transport network density and waiting time for public transportation. In addition, the perspectives towards APTS development and assessment framework development in BMR is highlighted to revise impediment of regulation and encourage integration among stakeholders. Then, the approaches of the APTS evaluation framework in BMR are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.