In order to unify the management and scheduling of cloud resources, cloud platforms use virtualization technology to re-integrate multiple computing resources in the cloud and build virtual units on physical machines to achieve dynamic provisioning of resources by configuring virtual units of various sizes. Therefore, how to reasonably determine the mapping relationship between virtual units and physical machines is an important research topic for cloud resource scheduling. In this paper, we propose a fair cloud virtual machine resource allocation method of using the stable matching theory. Our allocation method considers the allocation of resources from both user's demand and cloud computing resource provider's request. When multiple users apply for resources, firstly select a user by user priority, and then deal with this user's task. Because the user priority is dynamic, so as to avoid a user's long-term share of resources. This strategy makes user task scheduling is relatively fair. On the basis of weighing the fair allocation of user resources, the stable matching between physical machines and virtual machines is achieved. Our simulation experiments especially given that the main focus of the paper is not to develop a very novel algorithm, but to demonstrate our virtual machine resource allocation method, which effectively improves the average utilization rate of computing resources and reduces the operating costs of cloud providers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.