The aim of this research paper is to test the antistaphylococcal effect of 1,8-cineole, amoxicillin/clavulanic acid (AMC), and gentamicin, either separately or in combination against three Staphylococcus aureus strains isolated from patients suffering from osteomyelitis. This activity was tested in vitro by using the microdilution method and the checkerboard assay. The efficacy of these three antibacterial agents was then tested in vivo by using an experimental model of methicillin-resistant S. aureus osteomyelitis in rabbits. This efficacy was assessed after four days of treatment by counting the number of bacteria in the bone marrow. The obtained results in vitro showed that the combination of the AMC with gentamicin did not induce a synergistic effect, whereas the combination of the two antibiotics with 1,8-cineole did. This effect is stronger when AMC is combined with 1,8-cineole as a total synergistic effect was obtained on the three strains used (FIC ≤ 0.5). In vivo, a significant reduction was noted in the number of colonies in the bone marrow when rabbits were treated with AMC associated with either 1,8-cineole or gentamicin compared to rabbits treated with AMC, gentamicin, or 1,8-cineole alone. These results demonstrated that 1,8-cineole showed a synergistic effect in combination with both AMC and gentamicin, which offer possibilities for reducing antibiotic usage. Also, the AMC associated with 1,8-cineole could be used to treat MRSA osteomyelitis.
The purpose of the present study is twofold. First, it aims to evaluate the synergistic action of the ß-lactam antibiotic; AMX is associated with 1,8-cineole on six clinical isolates of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains. Second, it aims to determine the effect this association has on the ESBL enzymatic resistance mechanism. The synergistic action of AMX/1,8-cineole was evaluated using partial inhibitory concentrations (PIC), determined by a microplate, a checkerboard and time–kill assays. The effect of AMX/1,8-cineole associations on the ESBL enzymatic resistance mechanism was evaluated using a new optimized enzymatic assay. This assay was based on the determination of the AMX antibacterial activity when combined with 1,8-cineole (at subinhibitory concentrations) in the presence or absence of the ß-lactamase enzyme toward a sensitive E. coli strain. The results of both checkerboard and time–kill assays showed a strong synergistic action between AMX and 1,8-cineole. The results of the enzymatic assay showed that the combination of AMX with 1,8-cineole notably influences the enzymatic resistance of the reaction by decreasing the affinity of the β-lactam antibiotic, AMX, to the β-lactamase enzyme. All obtained results suggested that the AMX/1,8-cineole association could be employed in therapy to overcome bacterial resistance to AMX while reducing the prevalence of resistance.
This study aims at verifying, in vitro, the extent to which the use of amoxicillin or thymol induces the selection of resistant bacteria and at evaluating in vivo their effects on the development of antimicrobial resistance in the intestinal flora of poultry. E. coli strain was subcultured on agar plates containing increasing concentrations of either amoxicillin or thymol. Thereafter, minimal inhibitory concentrations (MICs) of thymol, amoxicillin, and two other antibiotics, tylosin and colistin, were determined using the microdilution method. Groups of chicks were subjected to a 2-week regime of either amoxicillin or thymol added to their drinking water. During the treatment with either thymol or amoxicillin, the total aerobic mesophilic flora (TAMF) was counted on thymol-gradient plates or amoxicillin-gradient plates and the MICs of antibiotics and thymol for E. coli isolates were determined. The in vitro test showed that for E. coli, which had been serially subcultured on increasing concentrations of amoxicillin, a 32-fold increase in MIC values for amoxicillin and a 4-fold increase for colistin and tylosin were noted. However, the MIC of thymol for this strain remained constant. For the E. coli, which had been serially subcultured on increasing concentrations of thymol, no change in the MIC values for antibiotics and thymol was observed. The in vivo test confirmed the in vitro one. It demonstrated that exposure to amoxicillin induced a selection of antimicrobial resistance in TAMF and intestinal E. coli, whereas exposure to thymol did not. The results showed that the group receiving thymol had a lower consumption index compared to the other groups. This study demonstrates the feasibility of this natural product as an alternative solution to the current use of antibiotics in poultry farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.